An extensive benchmark study on biomedical text generation and mining with ChatGPT
Abstract Motivation In recent years, the development of natural language process (NLP) technologies and deep learning hardware has led to significant improvement in large language models (LLMs). The ChatGPT, the state-of-the-art LLM built on GPT-3.5 and GPT-4, shows excellent capabilities in general...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2023-09, Vol.39 (9) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Bioinformatics (Oxford, England) |
container_volume | 39 |
creator | Chen, Qijie Sun, Haotong Liu, Haoyang Jiang, Yinghui Ran, Ting Jin, Xurui Xiao, Xianglu Lin, Zhimin Chen, Hongming Niu, Zhangmin |
description | Abstract
Motivation
In recent years, the development of natural language process (NLP) technologies and deep learning hardware has led to significant improvement in large language models (LLMs). The ChatGPT, the state-of-the-art LLM built on GPT-3.5 and GPT-4, shows excellent capabilities in general language understanding and reasoning. Researchers also tested the GPTs on a variety of NLP-related tasks and benchmarks and got excellent results. With exciting performance on daily chat, researchers began to explore the capacity of ChatGPT on expertise that requires professional education for human and we are interested in the biomedical domain.
Results
To evaluate the performance of ChatGPT on biomedical-related tasks, this article presents a comprehensive benchmark study on the use of ChatGPT for biomedical corpus, including article abstracts, clinical trials description, biomedical questions, and so on. Typical NLP tasks like named entity recognization, relation extraction, sentence similarity, question and answering, and document classification are included. Overall, ChatGPT got a BLURB score of 58.50 while the state-of-the-art model had a score of 84.30. Through a series of experiments, we demonstrated the effectiveness and versatility of ChatGPT in biomedical text understanding, reasoning and generation, and the limitation of ChatGPT build on GPT-3.5.
Availability and implementation
All the datasets are available from BLURB benchmark https://microsoft.github.io/BLURB/index.html. The prompts are described in the article. |
doi_str_mv | 10.1093/bioinformatics/btad557 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10562950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btad557</oup_id><sourcerecordid>2863303799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-e89ad8cdd0dcdf3bb359e3f4e9c0bc680dfda73aaefad23eedd44c1c5b0489ca3</originalsourceid><addsrcrecordid>eNqNUUtLAzEQDqLYWv0LkqOXtclmnycpRasgKFLPIZvMdqO7Sd1kq_33RlrE3jzNwHyPmfkQuqTkmpKSTStttalt3wmvpZtWXqg0zY_QmLIsj5KC0uM__QidOfdGCElJmp2iEcuzIqaUjtHLzGD48mCc3gCuwMimE_07dn5QW2wNDkYdKC1Fi30A4hUY6INpGAmjcKeNNiv8qX2D543wi-flOTqpRevgYl8n6PXudjm_jx6fFg_z2WMkE5b4CIpSqEIqRZRUNasqlpbA6gRKSSqZFUTVSuRMCKiFihmAUkkiqUwrkhSlFGyCbna666EKK0owvhctX_c6XLDlVmh-ODG64Su74TQ8IS5TEhSu9gq9_RjAed5pJ6FthQE7OB4XGWOE5WUZoNkOKnvrXA_1rw8l_CcRfpgI3ycSiHRHtMP6v5xvTAeZUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863303799</pqid></control><display><type>article</type><title>An extensive benchmark study on biomedical text generation and mining with ChatGPT</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chen, Qijie ; Sun, Haotong ; Liu, Haoyang ; Jiang, Yinghui ; Ran, Ting ; Jin, Xurui ; Xiao, Xianglu ; Lin, Zhimin ; Chen, Hongming ; Niu, Zhangmin</creator><contributor>Wren, Jonathan</contributor><creatorcontrib>Chen, Qijie ; Sun, Haotong ; Liu, Haoyang ; Jiang, Yinghui ; Ran, Ting ; Jin, Xurui ; Xiao, Xianglu ; Lin, Zhimin ; Chen, Hongming ; Niu, Zhangmin ; Wren, Jonathan</creatorcontrib><description>Abstract
Motivation
In recent years, the development of natural language process (NLP) technologies and deep learning hardware has led to significant improvement in large language models (LLMs). The ChatGPT, the state-of-the-art LLM built on GPT-3.5 and GPT-4, shows excellent capabilities in general language understanding and reasoning. Researchers also tested the GPTs on a variety of NLP-related tasks and benchmarks and got excellent results. With exciting performance on daily chat, researchers began to explore the capacity of ChatGPT on expertise that requires professional education for human and we are interested in the biomedical domain.
Results
To evaluate the performance of ChatGPT on biomedical-related tasks, this article presents a comprehensive benchmark study on the use of ChatGPT for biomedical corpus, including article abstracts, clinical trials description, biomedical questions, and so on. Typical NLP tasks like named entity recognization, relation extraction, sentence similarity, question and answering, and document classification are included. Overall, ChatGPT got a BLURB score of 58.50 while the state-of-the-art model had a score of 84.30. Through a series of experiments, we demonstrated the effectiveness and versatility of ChatGPT in biomedical text understanding, reasoning and generation, and the limitation of ChatGPT build on GPT-3.5.
Availability and implementation
All the datasets are available from BLURB benchmark https://microsoft.github.io/BLURB/index.html. The prompts are described in the article.</description><identifier>ISSN: 1367-4811</identifier><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btad557</identifier><identifier>PMID: 37682111</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Original Paper</subject><ispartof>Bioinformatics (Oxford, England), 2023-09, Vol.39 (9)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-e89ad8cdd0dcdf3bb359e3f4e9c0bc680dfda73aaefad23eedd44c1c5b0489ca3</citedby><cites>FETCH-LOGICAL-c434t-e89ad8cdd0dcdf3bb359e3f4e9c0bc680dfda73aaefad23eedd44c1c5b0489ca3</cites><orcidid>0000-0002-7009-946X ; 0000-0003-0661-652X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562950/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562950/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1605,27929,27930,53796,53798</link.rule.ids></links><search><contributor>Wren, Jonathan</contributor><creatorcontrib>Chen, Qijie</creatorcontrib><creatorcontrib>Sun, Haotong</creatorcontrib><creatorcontrib>Liu, Haoyang</creatorcontrib><creatorcontrib>Jiang, Yinghui</creatorcontrib><creatorcontrib>Ran, Ting</creatorcontrib><creatorcontrib>Jin, Xurui</creatorcontrib><creatorcontrib>Xiao, Xianglu</creatorcontrib><creatorcontrib>Lin, Zhimin</creatorcontrib><creatorcontrib>Chen, Hongming</creatorcontrib><creatorcontrib>Niu, Zhangmin</creatorcontrib><title>An extensive benchmark study on biomedical text generation and mining with ChatGPT</title><title>Bioinformatics (Oxford, England)</title><description>Abstract
Motivation
In recent years, the development of natural language process (NLP) technologies and deep learning hardware has led to significant improvement in large language models (LLMs). The ChatGPT, the state-of-the-art LLM built on GPT-3.5 and GPT-4, shows excellent capabilities in general language understanding and reasoning. Researchers also tested the GPTs on a variety of NLP-related tasks and benchmarks and got excellent results. With exciting performance on daily chat, researchers began to explore the capacity of ChatGPT on expertise that requires professional education for human and we are interested in the biomedical domain.
Results
To evaluate the performance of ChatGPT on biomedical-related tasks, this article presents a comprehensive benchmark study on the use of ChatGPT for biomedical corpus, including article abstracts, clinical trials description, biomedical questions, and so on. Typical NLP tasks like named entity recognization, relation extraction, sentence similarity, question and answering, and document classification are included. Overall, ChatGPT got a BLURB score of 58.50 while the state-of-the-art model had a score of 84.30. Through a series of experiments, we demonstrated the effectiveness and versatility of ChatGPT in biomedical text understanding, reasoning and generation, and the limitation of ChatGPT build on GPT-3.5.
Availability and implementation
All the datasets are available from BLURB benchmark https://microsoft.github.io/BLURB/index.html. The prompts are described in the article.</description><subject>Original Paper</subject><issn>1367-4811</issn><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNUUtLAzEQDqLYWv0LkqOXtclmnycpRasgKFLPIZvMdqO7Sd1kq_33RlrE3jzNwHyPmfkQuqTkmpKSTStttalt3wmvpZtWXqg0zY_QmLIsj5KC0uM__QidOfdGCElJmp2iEcuzIqaUjtHLzGD48mCc3gCuwMimE_07dn5QW2wNDkYdKC1Fi30A4hUY6INpGAmjcKeNNiv8qX2D543wi-flOTqpRevgYl8n6PXudjm_jx6fFg_z2WMkE5b4CIpSqEIqRZRUNasqlpbA6gRKSSqZFUTVSuRMCKiFihmAUkkiqUwrkhSlFGyCbna666EKK0owvhctX_c6XLDlVmh-ODG64Su74TQ8IS5TEhSu9gq9_RjAed5pJ6FthQE7OB4XGWOE5WUZoNkOKnvrXA_1rw8l_CcRfpgI3ycSiHRHtMP6v5xvTAeZUg</recordid><startdate>20230902</startdate><enddate>20230902</enddate><creator>Chen, Qijie</creator><creator>Sun, Haotong</creator><creator>Liu, Haoyang</creator><creator>Jiang, Yinghui</creator><creator>Ran, Ting</creator><creator>Jin, Xurui</creator><creator>Xiao, Xianglu</creator><creator>Lin, Zhimin</creator><creator>Chen, Hongming</creator><creator>Niu, Zhangmin</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7009-946X</orcidid><orcidid>https://orcid.org/0000-0003-0661-652X</orcidid></search><sort><creationdate>20230902</creationdate><title>An extensive benchmark study on biomedical text generation and mining with ChatGPT</title><author>Chen, Qijie ; Sun, Haotong ; Liu, Haoyang ; Jiang, Yinghui ; Ran, Ting ; Jin, Xurui ; Xiao, Xianglu ; Lin, Zhimin ; Chen, Hongming ; Niu, Zhangmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-e89ad8cdd0dcdf3bb359e3f4e9c0bc680dfda73aaefad23eedd44c1c5b0489ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qijie</creatorcontrib><creatorcontrib>Sun, Haotong</creatorcontrib><creatorcontrib>Liu, Haoyang</creatorcontrib><creatorcontrib>Jiang, Yinghui</creatorcontrib><creatorcontrib>Ran, Ting</creatorcontrib><creatorcontrib>Jin, Xurui</creatorcontrib><creatorcontrib>Xiao, Xianglu</creatorcontrib><creatorcontrib>Lin, Zhimin</creatorcontrib><creatorcontrib>Chen, Hongming</creatorcontrib><creatorcontrib>Niu, Zhangmin</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qijie</au><au>Sun, Haotong</au><au>Liu, Haoyang</au><au>Jiang, Yinghui</au><au>Ran, Ting</au><au>Jin, Xurui</au><au>Xiao, Xianglu</au><au>Lin, Zhimin</au><au>Chen, Hongming</au><au>Niu, Zhangmin</au><au>Wren, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extensive benchmark study on biomedical text generation and mining with ChatGPT</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><date>2023-09-02</date><risdate>2023</risdate><volume>39</volume><issue>9</issue><issn>1367-4811</issn><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
In recent years, the development of natural language process (NLP) technologies and deep learning hardware has led to significant improvement in large language models (LLMs). The ChatGPT, the state-of-the-art LLM built on GPT-3.5 and GPT-4, shows excellent capabilities in general language understanding and reasoning. Researchers also tested the GPTs on a variety of NLP-related tasks and benchmarks and got excellent results. With exciting performance on daily chat, researchers began to explore the capacity of ChatGPT on expertise that requires professional education for human and we are interested in the biomedical domain.
Results
To evaluate the performance of ChatGPT on biomedical-related tasks, this article presents a comprehensive benchmark study on the use of ChatGPT for biomedical corpus, including article abstracts, clinical trials description, biomedical questions, and so on. Typical NLP tasks like named entity recognization, relation extraction, sentence similarity, question and answering, and document classification are included. Overall, ChatGPT got a BLURB score of 58.50 while the state-of-the-art model had a score of 84.30. Through a series of experiments, we demonstrated the effectiveness and versatility of ChatGPT in biomedical text understanding, reasoning and generation, and the limitation of ChatGPT build on GPT-3.5.
Availability and implementation
All the datasets are available from BLURB benchmark https://microsoft.github.io/BLURB/index.html. The prompts are described in the article.</abstract><pub>Oxford University Press</pub><pmid>37682111</pmid><doi>10.1093/bioinformatics/btad557</doi><orcidid>https://orcid.org/0000-0002-7009-946X</orcidid><orcidid>https://orcid.org/0000-0003-0661-652X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4811 |
ispartof | Bioinformatics (Oxford, England), 2023-09, Vol.39 (9) |
issn | 1367-4811 1367-4803 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10562950 |
source | DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Original Paper |
title | An extensive benchmark study on biomedical text generation and mining with ChatGPT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extensive%20benchmark%20study%20on%20biomedical%20text%20generation%20and%20mining%20with%20ChatGPT&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Chen,%20Qijie&rft.date=2023-09-02&rft.volume=39&rft.issue=9&rft.issn=1367-4811&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btad557&rft_dat=%3Cproquest_pubme%3E2863303799%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863303799&rft_id=info:pmid/37682111&rft_oup_id=10.1093/bioinformatics/btad557&rfr_iscdi=true |