Looking for future biological control agents: the comparative function of the deutosternal groove in mesostigmatid mites

The physics of fluid laminar flow through an idealised deutosternum assembly is used for the first time to review predatory feeding designs over 72 different-sized example species from 16 mesostigmatid families in order to inform the finding of new biological control agents. Gnathosomal data are dig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental & applied acarology 2023-10, Vol.91 (2), p.139-235
1. Verfasser: Bowman, Clive E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 2
container_start_page 139
container_title Experimental & applied acarology
container_volume 91
creator Bowman, Clive E.
description The physics of fluid laminar flow through an idealised deutosternum assembly is used for the first time to review predatory feeding designs over 72 different-sized example species from 16 mesostigmatid families in order to inform the finding of new biological control agents. Gnathosomal data are digitised from published sources. Relevant gnathosomal macro- and micro-features are compared and contrasted in detail which may subtly impact the control of channel- or ‘pipe’-based transport of prey liquids around various gnathosomal locations. Relative deutosternal groove width on the mesostigmatid subcapitulum is important but appears unrelated to the closing velocity ratio of the moveable digit. Big mites are adapted for handling large and watery prey. The repeated regular distance between deutosternal transverse ridges (‘Querleisten’) supports the idea of them enabling a regular fluctuating bulging or pulsing droplet-based fluid wave ‘sticking’ and ‘slipping’ along the groove. Phytoseiids are an outlier functional group with a low deutosternal pipe flow per body size designed for slot-like microchannel transport in low volume fluid threads arising from daintily nibbling nearby prey klinorhynchidly. Deutosternal groove denticles are orientated topographically in order to synergise flow and possible mixing of coxal gland-derived droplets and circumcapitular reservoir fluids across the venter of the gnathosomal base back via the hypostome to the prey being masticated by the chelicerae. As well as working with the tritosternum to mechanically clean the deutosternum, denticles may suppress fluid drag. Shallow grooves may support edge-crawling viscous flow. Lateral features may facilitate handling unusual amounts of fluid arising from opportunistic feeding on atypical prey. Various conjectures for confirmatory follow-up are highlighted. Suggestions as to how to triage non-uropodoid species as candidate plant pest control agents are included.
doi_str_mv 10.1007/s10493-023-00832-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10562343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874649387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-34cf5366efb0eacd51537463026de91af63b740a6f5df6e5e844049c4eee6f163</originalsourceid><addsrcrecordid>eNqFkktuFDEQhi0EIkPgAixQS2zYdCi_e9igKAKCNBIbWFsed7nj0N0ebHckxGVylpwMDxPCYwELy3LV95frRchTCicUQL_MFMSat8DqgY6zFu6RFZWatWsN7D5ZAVVd21HFjsijnC8BQIKSD8kR10orruWKfNvE-DnMQ-NjavxSloTNNsQxDsHZsXFxLimOjR1wLvnVzXW5wGqcdjbZEq6wSmZXQpyb6Ju9r8elxFwwzVU9pBgrE-ab6wlzNYdhqrK-PkPB_Jg88HbM-OT2Piaf3r75eHbebj68e392ummdhK60XDgvuVLot4DW9ZJKroXiwFSPa2q94lstwCove69QYidEbYwTiKg8VfyYvD7E3S3bCXtXS0l2NLsUJpu-mmiD-dMzhwszxCtDQSrGBa8RXtxGSPHLgrmYKWSH42hnjEs2vKYkNXAh_4uyTjG61l0nKvr8L_QyLvvG7alaYR1upyvFDpRLMeeE_i5xCma_B-awB6bugfmxBwaq6NnvJd9Jfg6-AvwA5OqaB0y__v5H2O8rdMN7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874649387</pqid></control><display><type>article</type><title>Looking for future biological control agents: the comparative function of the deutosternal groove in mesostigmatid mites</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Bowman, Clive E.</creator><creatorcontrib>Bowman, Clive E.</creatorcontrib><description>The physics of fluid laminar flow through an idealised deutosternum assembly is used for the first time to review predatory feeding designs over 72 different-sized example species from 16 mesostigmatid families in order to inform the finding of new biological control agents. Gnathosomal data are digitised from published sources. Relevant gnathosomal macro- and micro-features are compared and contrasted in detail which may subtly impact the control of channel- or ‘pipe’-based transport of prey liquids around various gnathosomal locations. Relative deutosternal groove width on the mesostigmatid subcapitulum is important but appears unrelated to the closing velocity ratio of the moveable digit. Big mites are adapted for handling large and watery prey. The repeated regular distance between deutosternal transverse ridges (‘Querleisten’) supports the idea of them enabling a regular fluctuating bulging or pulsing droplet-based fluid wave ‘sticking’ and ‘slipping’ along the groove. Phytoseiids are an outlier functional group with a low deutosternal pipe flow per body size designed for slot-like microchannel transport in low volume fluid threads arising from daintily nibbling nearby prey klinorhynchidly. Deutosternal groove denticles are orientated topographically in order to synergise flow and possible mixing of coxal gland-derived droplets and circumcapitular reservoir fluids across the venter of the gnathosomal base back via the hypostome to the prey being masticated by the chelicerae. As well as working with the tritosternum to mechanically clean the deutosternum, denticles may suppress fluid drag. Shallow grooves may support edge-crawling viscous flow. Lateral features may facilitate handling unusual amounts of fluid arising from opportunistic feeding on atypical prey. Various conjectures for confirmatory follow-up are highlighted. Suggestions as to how to triage non-uropodoid species as candidate plant pest control agents are included.</description><identifier>ISSN: 0168-8162</identifier><identifier>EISSN: 1572-9702</identifier><identifier>DOI: 10.1007/s10493-023-00832-0</identifier><identifier>PMID: 37676375</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animal Ecology ; Animal Genetics and Genomics ; Animal Systematics/Taxonomy/Biogeography ; Animals ; Biological control ; Biological Control Agents ; Biomedical and Life Sciences ; Body size ; Candidates ; Chelicerae ; Dental Pulp Calcification ; Design ; Droplets ; Entomology ; Fluid flow ; Functional groups ; Grooves ; Herbivores ; Humans ; Laminar flow ; Life Sciences ; Mesostigmata ; Microchannels ; Mites ; Nibbling ; Outliers (landforms) ; Outliers (statistics) ; Pest control ; Pest Control, Biological ; Pipe flow ; Predatory Behavior ; Prey ; Review ; Viscous flow</subject><ispartof>Experimental &amp; applied acarology, 2023-10, Vol.91 (2), p.139-235</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-34cf5366efb0eacd51537463026de91af63b740a6f5df6e5e844049c4eee6f163</citedby><cites>FETCH-LOGICAL-c508t-34cf5366efb0eacd51537463026de91af63b740a6f5df6e5e844049c4eee6f163</cites><orcidid>0000-0002-4558-4981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10493-023-00832-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10493-023-00832-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37676375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowman, Clive E.</creatorcontrib><title>Looking for future biological control agents: the comparative function of the deutosternal groove in mesostigmatid mites</title><title>Experimental &amp; applied acarology</title><addtitle>Exp Appl Acarol</addtitle><addtitle>Exp Appl Acarol</addtitle><description>The physics of fluid laminar flow through an idealised deutosternum assembly is used for the first time to review predatory feeding designs over 72 different-sized example species from 16 mesostigmatid families in order to inform the finding of new biological control agents. Gnathosomal data are digitised from published sources. Relevant gnathosomal macro- and micro-features are compared and contrasted in detail which may subtly impact the control of channel- or ‘pipe’-based transport of prey liquids around various gnathosomal locations. Relative deutosternal groove width on the mesostigmatid subcapitulum is important but appears unrelated to the closing velocity ratio of the moveable digit. Big mites are adapted for handling large and watery prey. The repeated regular distance between deutosternal transverse ridges (‘Querleisten’) supports the idea of them enabling a regular fluctuating bulging or pulsing droplet-based fluid wave ‘sticking’ and ‘slipping’ along the groove. Phytoseiids are an outlier functional group with a low deutosternal pipe flow per body size designed for slot-like microchannel transport in low volume fluid threads arising from daintily nibbling nearby prey klinorhynchidly. Deutosternal groove denticles are orientated topographically in order to synergise flow and possible mixing of coxal gland-derived droplets and circumcapitular reservoir fluids across the venter of the gnathosomal base back via the hypostome to the prey being masticated by the chelicerae. As well as working with the tritosternum to mechanically clean the deutosternum, denticles may suppress fluid drag. Shallow grooves may support edge-crawling viscous flow. Lateral features may facilitate handling unusual amounts of fluid arising from opportunistic feeding on atypical prey. Various conjectures for confirmatory follow-up are highlighted. Suggestions as to how to triage non-uropodoid species as candidate plant pest control agents are included.</description><subject>Animal Ecology</subject><subject>Animal Genetics and Genomics</subject><subject>Animal Systematics/Taxonomy/Biogeography</subject><subject>Animals</subject><subject>Biological control</subject><subject>Biological Control Agents</subject><subject>Biomedical and Life Sciences</subject><subject>Body size</subject><subject>Candidates</subject><subject>Chelicerae</subject><subject>Dental Pulp Calcification</subject><subject>Design</subject><subject>Droplets</subject><subject>Entomology</subject><subject>Fluid flow</subject><subject>Functional groups</subject><subject>Grooves</subject><subject>Herbivores</subject><subject>Humans</subject><subject>Laminar flow</subject><subject>Life Sciences</subject><subject>Mesostigmata</subject><subject>Microchannels</subject><subject>Mites</subject><subject>Nibbling</subject><subject>Outliers (landforms)</subject><subject>Outliers (statistics)</subject><subject>Pest control</subject><subject>Pest Control, Biological</subject><subject>Pipe flow</subject><subject>Predatory Behavior</subject><subject>Prey</subject><subject>Review</subject><subject>Viscous flow</subject><issn>0168-8162</issn><issn>1572-9702</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkktuFDEQhi0EIkPgAixQS2zYdCi_e9igKAKCNBIbWFsed7nj0N0ebHckxGVylpwMDxPCYwELy3LV95frRchTCicUQL_MFMSat8DqgY6zFu6RFZWatWsN7D5ZAVVd21HFjsijnC8BQIKSD8kR10orruWKfNvE-DnMQ-NjavxSloTNNsQxDsHZsXFxLimOjR1wLvnVzXW5wGqcdjbZEq6wSmZXQpyb6Ju9r8elxFwwzVU9pBgrE-ab6wlzNYdhqrK-PkPB_Jg88HbM-OT2Piaf3r75eHbebj68e392ummdhK60XDgvuVLot4DW9ZJKroXiwFSPa2q94lstwCove69QYidEbYwTiKg8VfyYvD7E3S3bCXtXS0l2NLsUJpu-mmiD-dMzhwszxCtDQSrGBa8RXtxGSPHLgrmYKWSH42hnjEs2vKYkNXAh_4uyTjG61l0nKvr8L_QyLvvG7alaYR1upyvFDpRLMeeE_i5xCma_B-awB6bugfmxBwaq6NnvJd9Jfg6-AvwA5OqaB0y__v5H2O8rdMN7</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Bowman, Clive E.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7T7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4558-4981</orcidid></search><sort><creationdate>20231001</creationdate><title>Looking for future biological control agents: the comparative function of the deutosternal groove in mesostigmatid mites</title><author>Bowman, Clive E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-34cf5366efb0eacd51537463026de91af63b740a6f5df6e5e844049c4eee6f163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animal Ecology</topic><topic>Animal Genetics and Genomics</topic><topic>Animal Systematics/Taxonomy/Biogeography</topic><topic>Animals</topic><topic>Biological control</topic><topic>Biological Control Agents</topic><topic>Biomedical and Life Sciences</topic><topic>Body size</topic><topic>Candidates</topic><topic>Chelicerae</topic><topic>Dental Pulp Calcification</topic><topic>Design</topic><topic>Droplets</topic><topic>Entomology</topic><topic>Fluid flow</topic><topic>Functional groups</topic><topic>Grooves</topic><topic>Herbivores</topic><topic>Humans</topic><topic>Laminar flow</topic><topic>Life Sciences</topic><topic>Mesostigmata</topic><topic>Microchannels</topic><topic>Mites</topic><topic>Nibbling</topic><topic>Outliers (landforms)</topic><topic>Outliers (statistics)</topic><topic>Pest control</topic><topic>Pest Control, Biological</topic><topic>Pipe flow</topic><topic>Predatory Behavior</topic><topic>Prey</topic><topic>Review</topic><topic>Viscous flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowman, Clive E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental &amp; applied acarology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowman, Clive E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Looking for future biological control agents: the comparative function of the deutosternal groove in mesostigmatid mites</atitle><jtitle>Experimental &amp; applied acarology</jtitle><stitle>Exp Appl Acarol</stitle><addtitle>Exp Appl Acarol</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>91</volume><issue>2</issue><spage>139</spage><epage>235</epage><pages>139-235</pages><issn>0168-8162</issn><eissn>1572-9702</eissn><abstract>The physics of fluid laminar flow through an idealised deutosternum assembly is used for the first time to review predatory feeding designs over 72 different-sized example species from 16 mesostigmatid families in order to inform the finding of new biological control agents. Gnathosomal data are digitised from published sources. Relevant gnathosomal macro- and micro-features are compared and contrasted in detail which may subtly impact the control of channel- or ‘pipe’-based transport of prey liquids around various gnathosomal locations. Relative deutosternal groove width on the mesostigmatid subcapitulum is important but appears unrelated to the closing velocity ratio of the moveable digit. Big mites are adapted for handling large and watery prey. The repeated regular distance between deutosternal transverse ridges (‘Querleisten’) supports the idea of them enabling a regular fluctuating bulging or pulsing droplet-based fluid wave ‘sticking’ and ‘slipping’ along the groove. Phytoseiids are an outlier functional group with a low deutosternal pipe flow per body size designed for slot-like microchannel transport in low volume fluid threads arising from daintily nibbling nearby prey klinorhynchidly. Deutosternal groove denticles are orientated topographically in order to synergise flow and possible mixing of coxal gland-derived droplets and circumcapitular reservoir fluids across the venter of the gnathosomal base back via the hypostome to the prey being masticated by the chelicerae. As well as working with the tritosternum to mechanically clean the deutosternum, denticles may suppress fluid drag. Shallow grooves may support edge-crawling viscous flow. Lateral features may facilitate handling unusual amounts of fluid arising from opportunistic feeding on atypical prey. Various conjectures for confirmatory follow-up are highlighted. Suggestions as to how to triage non-uropodoid species as candidate plant pest control agents are included.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>37676375</pmid><doi>10.1007/s10493-023-00832-0</doi><tpages>97</tpages><orcidid>https://orcid.org/0000-0002-4558-4981</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-8162
ispartof Experimental & applied acarology, 2023-10, Vol.91 (2), p.139-235
issn 0168-8162
1572-9702
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10562343
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animal Ecology
Animal Genetics and Genomics
Animal Systematics/Taxonomy/Biogeography
Animals
Biological control
Biological Control Agents
Biomedical and Life Sciences
Body size
Candidates
Chelicerae
Dental Pulp Calcification
Design
Droplets
Entomology
Fluid flow
Functional groups
Grooves
Herbivores
Humans
Laminar flow
Life Sciences
Mesostigmata
Microchannels
Mites
Nibbling
Outliers (landforms)
Outliers (statistics)
Pest control
Pest Control, Biological
Pipe flow
Predatory Behavior
Prey
Review
Viscous flow
title Looking for future biological control agents: the comparative function of the deutosternal groove in mesostigmatid mites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Looking%20for%20future%20biological%20control%20agents:%C2%A0the%20comparative%20function%20of%20the%20deutosternal%20groove%20in%C2%A0mesostigmatid%C2%A0mites&rft.jtitle=Experimental%20&%20applied%20acarology&rft.au=Bowman,%20Clive%20E.&rft.date=2023-10-01&rft.volume=91&rft.issue=2&rft.spage=139&rft.epage=235&rft.pages=139-235&rft.issn=0168-8162&rft.eissn=1572-9702&rft_id=info:doi/10.1007/s10493-023-00832-0&rft_dat=%3Cproquest_pubme%3E2874649387%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874649387&rft_id=info:pmid/37676375&rfr_iscdi=true