Three membrane fusion pore families determine the pathway to pore dilation
During exocytosis secretory vesicles fuse with a target membrane and release neurotransmitters, hormones, or other bioactive molecules through a membrane fusion pore. The initially small pore may subsequently dilate for full contents release, as commonly observed in amperometric traces. The size, sh...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2023-10, Vol.122 (19), p.3986-3998 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3998 |
---|---|
container_issue | 19 |
container_start_page | 3986 |
container_title | Biophysical journal |
container_volume | 122 |
creator | Su, Rui Wang, Shuyuan McDargh, Zachary O’Shaughnessy, Ben |
description | During exocytosis secretory vesicles fuse with a target membrane and release neurotransmitters, hormones, or other bioactive molecules through a membrane fusion pore. The initially small pore may subsequently dilate for full contents release, as commonly observed in amperometric traces. The size, shape, and evolution of the pore is critical to the course of contents release, but exact fusion pore solutions accounting for membrane tension and bending energy constraints have not been available. Here, we obtained exact solutions for fusion pores between two membranes. We find three families: a narrow pore, a wide pore, and an intermediate tether-like pore. For high tensions these are close to the catenoidal and tether solutions recently reported for freely hinged membrane boundaries. We suggest membrane fusion initially generates a stable narrow pore, and the dilation pathway is a transition to the stable wide pore family. The unstable intermediate pore is the transition state that sets the energy barrier for this dilation pathway. Pore dilation is mechanosensitive, as the energy barrier is lowered by increased membrane tension. Finally, we study fusion pores in nanodiscs, powerful systems for the study of individual pores. We show that nanodiscs stabilize fusion pores by locking them into the narrow pore family. |
doi_str_mv | 10.1016/j.bpj.2023.08.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10560699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349523005362</els_id><sourcerecordid>2858991475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-96de82eb2227e41bdb93fb3a33e62966ac51e6174a9d973495844ea04b58a48b3</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxS1UBFvgA_RS5dhLwvhPHFs9VBWCtgiJC5wtO5ntepXEqe2l4tvXq6WovXDySPN7z6P3CPlAoaFA5eW2ccu2YcB4A6oBRo_IiraC1QBKviMrAJA1F7o9Je9T2gJQ1gI9Iae8k0J0jK7I7cMmIlYTTi7aGav1LvkwV0uIZbaTHz2masCMcfJlnTdYLTZvftvnKocDNvjR5iI6J8drOya8eHnPyOPN9cPV9_ru_tuPq693dc8lzbWWAyqGjjHWoaBucJqvHbeco2RaStu3FCXthNWD7vbXKyHQgnCtskI5fka-HHyXnZtw6HHO0Y5miX6y8dkE683_m9lvzM_wZCi0EqTWxeHTi0MMv3aYspl86nEcSwJhlwxTrdKaiq4tKD2gfQwpRVy__kPB7EswW1NKMPsSDChTSiiaj_8e-Kr4m3oBPh8ALDE9eYwm9R7nHgcfsc9mCP4N-z98Z5iH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858991475</pqid></control><display><type>article</type><title>Three membrane fusion pore families determine the pathway to pore dilation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Su, Rui ; Wang, Shuyuan ; McDargh, Zachary ; O’Shaughnessy, Ben</creator><creatorcontrib>Su, Rui ; Wang, Shuyuan ; McDargh, Zachary ; O’Shaughnessy, Ben</creatorcontrib><description>During exocytosis secretory vesicles fuse with a target membrane and release neurotransmitters, hormones, or other bioactive molecules through a membrane fusion pore. The initially small pore may subsequently dilate for full contents release, as commonly observed in amperometric traces. The size, shape, and evolution of the pore is critical to the course of contents release, but exact fusion pore solutions accounting for membrane tension and bending energy constraints have not been available. Here, we obtained exact solutions for fusion pores between two membranes. We find three families: a narrow pore, a wide pore, and an intermediate tether-like pore. For high tensions these are close to the catenoidal and tether solutions recently reported for freely hinged membrane boundaries. We suggest membrane fusion initially generates a stable narrow pore, and the dilation pathway is a transition to the stable wide pore family. The unstable intermediate pore is the transition state that sets the energy barrier for this dilation pathway. Pore dilation is mechanosensitive, as the energy barrier is lowered by increased membrane tension. Finally, we study fusion pores in nanodiscs, powerful systems for the study of individual pores. We show that nanodiscs stabilize fusion pores by locking them into the narrow pore family.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2023.08.021</identifier><identifier>PMID: 37644721</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cell Membrane - metabolism ; Dilatation ; Exocytosis ; Humans ; Membrane Fusion ; Secretory Vesicles - metabolism</subject><ispartof>Biophysical journal, 2023-10, Vol.122 (19), p.3986-3998</ispartof><rights>2023 Biophysical Society</rights><rights>Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 Biophysical Society. 2023 Biophysical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-96de82eb2227e41bdb93fb3a33e62966ac51e6174a9d973495844ea04b58a48b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560699/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2023.08.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37644721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Wang, Shuyuan</creatorcontrib><creatorcontrib>McDargh, Zachary</creatorcontrib><creatorcontrib>O’Shaughnessy, Ben</creatorcontrib><title>Three membrane fusion pore families determine the pathway to pore dilation</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>During exocytosis secretory vesicles fuse with a target membrane and release neurotransmitters, hormones, or other bioactive molecules through a membrane fusion pore. The initially small pore may subsequently dilate for full contents release, as commonly observed in amperometric traces. The size, shape, and evolution of the pore is critical to the course of contents release, but exact fusion pore solutions accounting for membrane tension and bending energy constraints have not been available. Here, we obtained exact solutions for fusion pores between two membranes. We find three families: a narrow pore, a wide pore, and an intermediate tether-like pore. For high tensions these are close to the catenoidal and tether solutions recently reported for freely hinged membrane boundaries. We suggest membrane fusion initially generates a stable narrow pore, and the dilation pathway is a transition to the stable wide pore family. The unstable intermediate pore is the transition state that sets the energy barrier for this dilation pathway. Pore dilation is mechanosensitive, as the energy barrier is lowered by increased membrane tension. Finally, we study fusion pores in nanodiscs, powerful systems for the study of individual pores. We show that nanodiscs stabilize fusion pores by locking them into the narrow pore family.</description><subject>Cell Membrane - metabolism</subject><subject>Dilatation</subject><subject>Exocytosis</subject><subject>Humans</subject><subject>Membrane Fusion</subject><subject>Secretory Vesicles - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9P3DAQxS1UBFvgA_RS5dhLwvhPHFs9VBWCtgiJC5wtO5ntepXEqe2l4tvXq6WovXDySPN7z6P3CPlAoaFA5eW2ccu2YcB4A6oBRo_IiraC1QBKviMrAJA1F7o9Je9T2gJQ1gI9Iae8k0J0jK7I7cMmIlYTTi7aGav1LvkwV0uIZbaTHz2masCMcfJlnTdYLTZvftvnKocDNvjR5iI6J8drOya8eHnPyOPN9cPV9_ru_tuPq693dc8lzbWWAyqGjjHWoaBucJqvHbeco2RaStu3FCXthNWD7vbXKyHQgnCtskI5fka-HHyXnZtw6HHO0Y5miX6y8dkE683_m9lvzM_wZCi0EqTWxeHTi0MMv3aYspl86nEcSwJhlwxTrdKaiq4tKD2gfQwpRVy__kPB7EswW1NKMPsSDChTSiiaj_8e-Kr4m3oBPh8ALDE9eYwm9R7nHgcfsc9mCP4N-z98Z5iH</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Su, Rui</creator><creator>Wang, Shuyuan</creator><creator>McDargh, Zachary</creator><creator>O’Shaughnessy, Ben</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231003</creationdate><title>Three membrane fusion pore families determine the pathway to pore dilation</title><author>Su, Rui ; Wang, Shuyuan ; McDargh, Zachary ; O’Shaughnessy, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-96de82eb2227e41bdb93fb3a33e62966ac51e6174a9d973495844ea04b58a48b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cell Membrane - metabolism</topic><topic>Dilatation</topic><topic>Exocytosis</topic><topic>Humans</topic><topic>Membrane Fusion</topic><topic>Secretory Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Wang, Shuyuan</creatorcontrib><creatorcontrib>McDargh, Zachary</creatorcontrib><creatorcontrib>O’Shaughnessy, Ben</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Rui</au><au>Wang, Shuyuan</au><au>McDargh, Zachary</au><au>O’Shaughnessy, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three membrane fusion pore families determine the pathway to pore dilation</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2023-10-03</date><risdate>2023</risdate><volume>122</volume><issue>19</issue><spage>3986</spage><epage>3998</epage><pages>3986-3998</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>During exocytosis secretory vesicles fuse with a target membrane and release neurotransmitters, hormones, or other bioactive molecules through a membrane fusion pore. The initially small pore may subsequently dilate for full contents release, as commonly observed in amperometric traces. The size, shape, and evolution of the pore is critical to the course of contents release, but exact fusion pore solutions accounting for membrane tension and bending energy constraints have not been available. Here, we obtained exact solutions for fusion pores between two membranes. We find three families: a narrow pore, a wide pore, and an intermediate tether-like pore. For high tensions these are close to the catenoidal and tether solutions recently reported for freely hinged membrane boundaries. We suggest membrane fusion initially generates a stable narrow pore, and the dilation pathway is a transition to the stable wide pore family. The unstable intermediate pore is the transition state that sets the energy barrier for this dilation pathway. Pore dilation is mechanosensitive, as the energy barrier is lowered by increased membrane tension. Finally, we study fusion pores in nanodiscs, powerful systems for the study of individual pores. We show that nanodiscs stabilize fusion pores by locking them into the narrow pore family.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37644721</pmid><doi>10.1016/j.bpj.2023.08.021</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2023-10, Vol.122 (19), p.3986-3998 |
issn | 0006-3495 1542-0086 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10560699 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Cell Membrane - metabolism Dilatation Exocytosis Humans Membrane Fusion Secretory Vesicles - metabolism |
title | Three membrane fusion pore families determine the pathway to pore dilation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20membrane%20fusion%20pore%20families%20determine%20the%20pathway%20to%20pore%20dilation&rft.jtitle=Biophysical%20journal&rft.au=Su,%20Rui&rft.date=2023-10-03&rft.volume=122&rft.issue=19&rft.spage=3986&rft.epage=3998&rft.pages=3986-3998&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2023.08.021&rft_dat=%3Cproquest_pubme%3E2858991475%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858991475&rft_id=info:pmid/37644721&rft_els_id=S0006349523005362&rfr_iscdi=true |