Three membrane fusion pore families determine the pathway to pore dilation

During exocytosis secretory vesicles fuse with a target membrane and release neurotransmitters, hormones, or other bioactive molecules through a membrane fusion pore. The initially small pore may subsequently dilate for full contents release, as commonly observed in amperometric traces. The size, sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2023-10, Vol.122 (19), p.3986-3998
Hauptverfasser: Su, Rui, Wang, Shuyuan, McDargh, Zachary, O’Shaughnessy, Ben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3998
container_issue 19
container_start_page 3986
container_title Biophysical journal
container_volume 122
creator Su, Rui
Wang, Shuyuan
McDargh, Zachary
O’Shaughnessy, Ben
description During exocytosis secretory vesicles fuse with a target membrane and release neurotransmitters, hormones, or other bioactive molecules through a membrane fusion pore. The initially small pore may subsequently dilate for full contents release, as commonly observed in amperometric traces. The size, shape, and evolution of the pore is critical to the course of contents release, but exact fusion pore solutions accounting for membrane tension and bending energy constraints have not been available. Here, we obtained exact solutions for fusion pores between two membranes. We find three families: a narrow pore, a wide pore, and an intermediate tether-like pore. For high tensions these are close to the catenoidal and tether solutions recently reported for freely hinged membrane boundaries. We suggest membrane fusion initially generates a stable narrow pore, and the dilation pathway is a transition to the stable wide pore family. The unstable intermediate pore is the transition state that sets the energy barrier for this dilation pathway. Pore dilation is mechanosensitive, as the energy barrier is lowered by increased membrane tension. Finally, we study fusion pores in nanodiscs, powerful systems for the study of individual pores. We show that nanodiscs stabilize fusion pores by locking them into the narrow pore family.
doi_str_mv 10.1016/j.bpj.2023.08.021
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10560699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349523005362</els_id><sourcerecordid>2858991475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-96de82eb2227e41bdb93fb3a33e62966ac51e6174a9d973495844ea04b58a48b3</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxS1UBFvgA_RS5dhLwvhPHFs9VBWCtgiJC5wtO5ntepXEqe2l4tvXq6WovXDySPN7z6P3CPlAoaFA5eW2ccu2YcB4A6oBRo_IiraC1QBKviMrAJA1F7o9Je9T2gJQ1gI9Iae8k0J0jK7I7cMmIlYTTi7aGav1LvkwV0uIZbaTHz2masCMcfJlnTdYLTZvftvnKocDNvjR5iI6J8drOya8eHnPyOPN9cPV9_ru_tuPq693dc8lzbWWAyqGjjHWoaBucJqvHbeco2RaStu3FCXthNWD7vbXKyHQgnCtskI5fka-HHyXnZtw6HHO0Y5miX6y8dkE683_m9lvzM_wZCi0EqTWxeHTi0MMv3aYspl86nEcSwJhlwxTrdKaiq4tKD2gfQwpRVy__kPB7EswW1NKMPsSDChTSiiaj_8e-Kr4m3oBPh8ALDE9eYwm9R7nHgcfsc9mCP4N-z98Z5iH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858991475</pqid></control><display><type>article</type><title>Three membrane fusion pore families determine the pathway to pore dilation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Su, Rui ; Wang, Shuyuan ; McDargh, Zachary ; O’Shaughnessy, Ben</creator><creatorcontrib>Su, Rui ; Wang, Shuyuan ; McDargh, Zachary ; O’Shaughnessy, Ben</creatorcontrib><description>During exocytosis secretory vesicles fuse with a target membrane and release neurotransmitters, hormones, or other bioactive molecules through a membrane fusion pore. The initially small pore may subsequently dilate for full contents release, as commonly observed in amperometric traces. The size, shape, and evolution of the pore is critical to the course of contents release, but exact fusion pore solutions accounting for membrane tension and bending energy constraints have not been available. Here, we obtained exact solutions for fusion pores between two membranes. We find three families: a narrow pore, a wide pore, and an intermediate tether-like pore. For high tensions these are close to the catenoidal and tether solutions recently reported for freely hinged membrane boundaries. We suggest membrane fusion initially generates a stable narrow pore, and the dilation pathway is a transition to the stable wide pore family. The unstable intermediate pore is the transition state that sets the energy barrier for this dilation pathway. Pore dilation is mechanosensitive, as the energy barrier is lowered by increased membrane tension. Finally, we study fusion pores in nanodiscs, powerful systems for the study of individual pores. We show that nanodiscs stabilize fusion pores by locking them into the narrow pore family.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2023.08.021</identifier><identifier>PMID: 37644721</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cell Membrane - metabolism ; Dilatation ; Exocytosis ; Humans ; Membrane Fusion ; Secretory Vesicles - metabolism</subject><ispartof>Biophysical journal, 2023-10, Vol.122 (19), p.3986-3998</ispartof><rights>2023 Biophysical Society</rights><rights>Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 Biophysical Society. 2023 Biophysical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-96de82eb2227e41bdb93fb3a33e62966ac51e6174a9d973495844ea04b58a48b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10560699/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2023.08.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37644721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Wang, Shuyuan</creatorcontrib><creatorcontrib>McDargh, Zachary</creatorcontrib><creatorcontrib>O’Shaughnessy, Ben</creatorcontrib><title>Three membrane fusion pore families determine the pathway to pore dilation</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>During exocytosis secretory vesicles fuse with a target membrane and release neurotransmitters, hormones, or other bioactive molecules through a membrane fusion pore. The initially small pore may subsequently dilate for full contents release, as commonly observed in amperometric traces. The size, shape, and evolution of the pore is critical to the course of contents release, but exact fusion pore solutions accounting for membrane tension and bending energy constraints have not been available. Here, we obtained exact solutions for fusion pores between two membranes. We find three families: a narrow pore, a wide pore, and an intermediate tether-like pore. For high tensions these are close to the catenoidal and tether solutions recently reported for freely hinged membrane boundaries. We suggest membrane fusion initially generates a stable narrow pore, and the dilation pathway is a transition to the stable wide pore family. The unstable intermediate pore is the transition state that sets the energy barrier for this dilation pathway. Pore dilation is mechanosensitive, as the energy barrier is lowered by increased membrane tension. Finally, we study fusion pores in nanodiscs, powerful systems for the study of individual pores. We show that nanodiscs stabilize fusion pores by locking them into the narrow pore family.</description><subject>Cell Membrane - metabolism</subject><subject>Dilatation</subject><subject>Exocytosis</subject><subject>Humans</subject><subject>Membrane Fusion</subject><subject>Secretory Vesicles - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9P3DAQxS1UBFvgA_RS5dhLwvhPHFs9VBWCtgiJC5wtO5ntepXEqe2l4tvXq6WovXDySPN7z6P3CPlAoaFA5eW2ccu2YcB4A6oBRo_IiraC1QBKviMrAJA1F7o9Je9T2gJQ1gI9Iae8k0J0jK7I7cMmIlYTTi7aGav1LvkwV0uIZbaTHz2masCMcfJlnTdYLTZvftvnKocDNvjR5iI6J8drOya8eHnPyOPN9cPV9_ru_tuPq693dc8lzbWWAyqGjjHWoaBucJqvHbeco2RaStu3FCXthNWD7vbXKyHQgnCtskI5fka-HHyXnZtw6HHO0Y5miX6y8dkE683_m9lvzM_wZCi0EqTWxeHTi0MMv3aYspl86nEcSwJhlwxTrdKaiq4tKD2gfQwpRVy__kPB7EswW1NKMPsSDChTSiiaj_8e-Kr4m3oBPh8ALDE9eYwm9R7nHgcfsc9mCP4N-z98Z5iH</recordid><startdate>20231003</startdate><enddate>20231003</enddate><creator>Su, Rui</creator><creator>Wang, Shuyuan</creator><creator>McDargh, Zachary</creator><creator>O’Shaughnessy, Ben</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231003</creationdate><title>Three membrane fusion pore families determine the pathway to pore dilation</title><author>Su, Rui ; Wang, Shuyuan ; McDargh, Zachary ; O’Shaughnessy, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-96de82eb2227e41bdb93fb3a33e62966ac51e6174a9d973495844ea04b58a48b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cell Membrane - metabolism</topic><topic>Dilatation</topic><topic>Exocytosis</topic><topic>Humans</topic><topic>Membrane Fusion</topic><topic>Secretory Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Wang, Shuyuan</creatorcontrib><creatorcontrib>McDargh, Zachary</creatorcontrib><creatorcontrib>O’Shaughnessy, Ben</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Rui</au><au>Wang, Shuyuan</au><au>McDargh, Zachary</au><au>O’Shaughnessy, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three membrane fusion pore families determine the pathway to pore dilation</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2023-10-03</date><risdate>2023</risdate><volume>122</volume><issue>19</issue><spage>3986</spage><epage>3998</epage><pages>3986-3998</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>During exocytosis secretory vesicles fuse with a target membrane and release neurotransmitters, hormones, or other bioactive molecules through a membrane fusion pore. The initially small pore may subsequently dilate for full contents release, as commonly observed in amperometric traces. The size, shape, and evolution of the pore is critical to the course of contents release, but exact fusion pore solutions accounting for membrane tension and bending energy constraints have not been available. Here, we obtained exact solutions for fusion pores between two membranes. We find three families: a narrow pore, a wide pore, and an intermediate tether-like pore. For high tensions these are close to the catenoidal and tether solutions recently reported for freely hinged membrane boundaries. We suggest membrane fusion initially generates a stable narrow pore, and the dilation pathway is a transition to the stable wide pore family. The unstable intermediate pore is the transition state that sets the energy barrier for this dilation pathway. Pore dilation is mechanosensitive, as the energy barrier is lowered by increased membrane tension. Finally, we study fusion pores in nanodiscs, powerful systems for the study of individual pores. We show that nanodiscs stabilize fusion pores by locking them into the narrow pore family.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37644721</pmid><doi>10.1016/j.bpj.2023.08.021</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2023-10, Vol.122 (19), p.3986-3998
issn 0006-3495
1542-0086
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10560699
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Cell Membrane - metabolism
Dilatation
Exocytosis
Humans
Membrane Fusion
Secretory Vesicles - metabolism
title Three membrane fusion pore families determine the pathway to pore dilation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20membrane%20fusion%20pore%20families%20determine%20the%20pathway%20to%20pore%20dilation&rft.jtitle=Biophysical%20journal&rft.au=Su,%20Rui&rft.date=2023-10-03&rft.volume=122&rft.issue=19&rft.spage=3986&rft.epage=3998&rft.pages=3986-3998&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2023.08.021&rft_dat=%3Cproquest_pubme%3E2858991475%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858991475&rft_id=info:pmid/37644721&rft_els_id=S0006349523005362&rfr_iscdi=true