Population Genomics of Two Closely Related Anhydrobiotic Midges Reveals Differences in Adaptation to Extreme Desiccation

Abstract The sleeping chironomid Polypedilum vanderplanki is capable of anhydrobiosis, a striking example of adaptation to extreme desiccation. Tolerance to complete desiccation in this species is associated with emergence of multiple paralogs of protective genes. One of the gene families highly exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome biology and evolution 2023-10, Vol.15 (10)
Hauptverfasser: Shaikhutdinov, Nurislam M, Klink, Galya V, Garushyants, Sofya K, Kozlova, Olga S, Cherkasov, Alexander V, Kikawada, Takahiro, Okuda, Takashi, Pemba, Dylo, Shagimardanova, Elena I, Penin, Aleksey A, Deviatiiarov, Ruslan M, Gazizova, Guzel R, Cornette, Richard, Gusev, Oleg A, Bazykin, Georgii A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Genome biology and evolution
container_volume 15
creator Shaikhutdinov, Nurislam M
Klink, Galya V
Garushyants, Sofya K
Kozlova, Olga S
Cherkasov, Alexander V
Kikawada, Takahiro
Okuda, Takashi
Pemba, Dylo
Shagimardanova, Elena I
Penin, Aleksey A
Deviatiiarov, Ruslan M
Gazizova, Guzel R
Cornette, Richard
Gusev, Oleg A
Bazykin, Georgii A
description Abstract The sleeping chironomid Polypedilum vanderplanki is capable of anhydrobiosis, a striking example of adaptation to extreme desiccation. Tolerance to complete desiccation in this species is associated with emergence of multiple paralogs of protective genes. One of the gene families highly expressed under anhydrobiosis and involved in this process is protein-L-isoaspartate (D-aspartate) O-methyltransferases (PIMTs). Recently, another closely related midge was discovered, Polypedilum pembai, which is able not only to tolerate desiccation but also to survive multiple desiccation–rehydration cycles. To investigate the evolution of anhydrobiosis in these species, we sequenced and assembled the genome of P. pembai and compared it with P. vanderplanki and also performed a population genomics analysis of several populations of P. vanderplanki and one population of P. pembai. We observe positive selection and radical changes in the genetic architecture of the PIMT locus between the two species, including its amplification in the P. pembai lineage. In particular, PIMT-4, the most highly expressed of these PIMTs, is present in six copies in the P. pembai; these copies differ in expression profiles, suggesting possible sub- or neofunctionalization. The nucleotide diversity of the genomic region carrying these new genes is decreased in P. pembai, but not in the orthologous region carrying the ancestral gene in P. vanderplanki, providing evidence for a selective sweep associated with postduplication adaptation in the former. Overall, our results suggest an extensive relatively recent and likely ongoing adaptation of the mechanisms of anhydrobiosis.
doi_str_mv 10.1093/gbe/evad169
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10558213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gbe/evad169</oup_id><sourcerecordid>2865788529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-7d35ca7ef9a4712479e7f404ab628b268d9f366db65802b1b724fc9d7215b89e3</originalsourceid><addsrcrecordid>eNp9kUtvFDEQhC0EIiFw4g_4hJCiJfZ4_Dqh1SYkSEEgFM6WH-2N0cx4sGeW7L9nwq4QXDh1q-rr6kMh9JqSd5RodrF1cAE7G6jQT9AplVyvhODs6V_7CXpR63dChGgFe45OmJREtZSdoocveZw7O6U84GsYcp98xTniu58Zb7pcodvjr7AAEPB6uN-Hkl3KU_L4UwpbqIu5A9tVfJlihAKDX7Q04HWw43SInTK-epgK9IAvoSbvf8sv0bO43MGr4zxD3z5c3W1uVrefrz9u1rcrzzSZVjIw7q2EqG0radNKDTK2pLVONMo1QgUdmRDBCa5I46iTTRu9DrKh3CkN7Ay9P-SOs-sheBimYjszltTbsjfZJvOvM6R7s807QwnnqqFsSXh7TCj5xwx1Mn2qHrrODpDnaholuFSKN3pBzw-oL7nWAvHPH0rMY1lmKcscy1roNwc6z-N_wV8SLpcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865788529</pqid></control><display><type>article</type><title>Population Genomics of Two Closely Related Anhydrobiotic Midges Reveals Differences in Adaptation to Extreme Desiccation</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Shaikhutdinov, Nurislam M ; Klink, Galya V ; Garushyants, Sofya K ; Kozlova, Olga S ; Cherkasov, Alexander V ; Kikawada, Takahiro ; Okuda, Takashi ; Pemba, Dylo ; Shagimardanova, Elena I ; Penin, Aleksey A ; Deviatiiarov, Ruslan M ; Gazizova, Guzel R ; Cornette, Richard ; Gusev, Oleg A ; Bazykin, Georgii A</creator><creatorcontrib>Shaikhutdinov, Nurislam M ; Klink, Galya V ; Garushyants, Sofya K ; Kozlova, Olga S ; Cherkasov, Alexander V ; Kikawada, Takahiro ; Okuda, Takashi ; Pemba, Dylo ; Shagimardanova, Elena I ; Penin, Aleksey A ; Deviatiiarov, Ruslan M ; Gazizova, Guzel R ; Cornette, Richard ; Gusev, Oleg A ; Bazykin, Georgii A</creatorcontrib><description>Abstract The sleeping chironomid Polypedilum vanderplanki is capable of anhydrobiosis, a striking example of adaptation to extreme desiccation. Tolerance to complete desiccation in this species is associated with emergence of multiple paralogs of protective genes. One of the gene families highly expressed under anhydrobiosis and involved in this process is protein-L-isoaspartate (D-aspartate) O-methyltransferases (PIMTs). Recently, another closely related midge was discovered, Polypedilum pembai, which is able not only to tolerate desiccation but also to survive multiple desiccation–rehydration cycles. To investigate the evolution of anhydrobiosis in these species, we sequenced and assembled the genome of P. pembai and compared it with P. vanderplanki and also performed a population genomics analysis of several populations of P. vanderplanki and one population of P. pembai. We observe positive selection and radical changes in the genetic architecture of the PIMT locus between the two species, including its amplification in the P. pembai lineage. In particular, PIMT-4, the most highly expressed of these PIMTs, is present in six copies in the P. pembai; these copies differ in expression profiles, suggesting possible sub- or neofunctionalization. The nucleotide diversity of the genomic region carrying these new genes is decreased in P. pembai, but not in the orthologous region carrying the ancestral gene in P. vanderplanki, providing evidence for a selective sweep associated with postduplication adaptation in the former. Overall, our results suggest an extensive relatively recent and likely ongoing adaptation of the mechanisms of anhydrobiosis.</description><identifier>ISSN: 1759-6653</identifier><identifier>EISSN: 1759-6653</identifier><identifier>DOI: 10.1093/gbe/evad169</identifier><identifier>PMID: 37708413</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><ispartof>Genome biology and evolution, 2023-10, Vol.15 (10)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-7d35ca7ef9a4712479e7f404ab628b268d9f366db65802b1b724fc9d7215b89e3</citedby><cites>FETCH-LOGICAL-c390t-7d35ca7ef9a4712479e7f404ab628b268d9f366db65802b1b724fc9d7215b89e3</cites><orcidid>0000-0003-2334-2751 ; 0000-0002-2329-9282 ; 0000-0001-8466-6958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558213/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558213/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Shaikhutdinov, Nurislam M</creatorcontrib><creatorcontrib>Klink, Galya V</creatorcontrib><creatorcontrib>Garushyants, Sofya K</creatorcontrib><creatorcontrib>Kozlova, Olga S</creatorcontrib><creatorcontrib>Cherkasov, Alexander V</creatorcontrib><creatorcontrib>Kikawada, Takahiro</creatorcontrib><creatorcontrib>Okuda, Takashi</creatorcontrib><creatorcontrib>Pemba, Dylo</creatorcontrib><creatorcontrib>Shagimardanova, Elena I</creatorcontrib><creatorcontrib>Penin, Aleksey A</creatorcontrib><creatorcontrib>Deviatiiarov, Ruslan M</creatorcontrib><creatorcontrib>Gazizova, Guzel R</creatorcontrib><creatorcontrib>Cornette, Richard</creatorcontrib><creatorcontrib>Gusev, Oleg A</creatorcontrib><creatorcontrib>Bazykin, Georgii A</creatorcontrib><title>Population Genomics of Two Closely Related Anhydrobiotic Midges Reveals Differences in Adaptation to Extreme Desiccation</title><title>Genome biology and evolution</title><description>Abstract The sleeping chironomid Polypedilum vanderplanki is capable of anhydrobiosis, a striking example of adaptation to extreme desiccation. Tolerance to complete desiccation in this species is associated with emergence of multiple paralogs of protective genes. One of the gene families highly expressed under anhydrobiosis and involved in this process is protein-L-isoaspartate (D-aspartate) O-methyltransferases (PIMTs). Recently, another closely related midge was discovered, Polypedilum pembai, which is able not only to tolerate desiccation but also to survive multiple desiccation–rehydration cycles. To investigate the evolution of anhydrobiosis in these species, we sequenced and assembled the genome of P. pembai and compared it with P. vanderplanki and also performed a population genomics analysis of several populations of P. vanderplanki and one population of P. pembai. We observe positive selection and radical changes in the genetic architecture of the PIMT locus between the two species, including its amplification in the P. pembai lineage. In particular, PIMT-4, the most highly expressed of these PIMTs, is present in six copies in the P. pembai; these copies differ in expression profiles, suggesting possible sub- or neofunctionalization. The nucleotide diversity of the genomic region carrying these new genes is decreased in P. pembai, but not in the orthologous region carrying the ancestral gene in P. vanderplanki, providing evidence for a selective sweep associated with postduplication adaptation in the former. Overall, our results suggest an extensive relatively recent and likely ongoing adaptation of the mechanisms of anhydrobiosis.</description><issn>1759-6653</issn><issn>1759-6653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kUtvFDEQhC0EIiFw4g_4hJCiJfZ4_Dqh1SYkSEEgFM6WH-2N0cx4sGeW7L9nwq4QXDh1q-rr6kMh9JqSd5RodrF1cAE7G6jQT9AplVyvhODs6V_7CXpR63dChGgFe45OmJREtZSdoocveZw7O6U84GsYcp98xTniu58Zb7pcodvjr7AAEPB6uN-Hkl3KU_L4UwpbqIu5A9tVfJlihAKDX7Q04HWw43SInTK-epgK9IAvoSbvf8sv0bO43MGr4zxD3z5c3W1uVrefrz9u1rcrzzSZVjIw7q2EqG0radNKDTK2pLVONMo1QgUdmRDBCa5I46iTTRu9DrKh3CkN7Ay9P-SOs-sheBimYjszltTbsjfZJvOvM6R7s807QwnnqqFsSXh7TCj5xwx1Mn2qHrrODpDnaholuFSKN3pBzw-oL7nWAvHPH0rMY1lmKcscy1roNwc6z-N_wV8SLpcA</recordid><startdate>20231006</startdate><enddate>20231006</enddate><creator>Shaikhutdinov, Nurislam M</creator><creator>Klink, Galya V</creator><creator>Garushyants, Sofya K</creator><creator>Kozlova, Olga S</creator><creator>Cherkasov, Alexander V</creator><creator>Kikawada, Takahiro</creator><creator>Okuda, Takashi</creator><creator>Pemba, Dylo</creator><creator>Shagimardanova, Elena I</creator><creator>Penin, Aleksey A</creator><creator>Deviatiiarov, Ruslan M</creator><creator>Gazizova, Guzel R</creator><creator>Cornette, Richard</creator><creator>Gusev, Oleg A</creator><creator>Bazykin, Georgii A</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2334-2751</orcidid><orcidid>https://orcid.org/0000-0002-2329-9282</orcidid><orcidid>https://orcid.org/0000-0001-8466-6958</orcidid></search><sort><creationdate>20231006</creationdate><title>Population Genomics of Two Closely Related Anhydrobiotic Midges Reveals Differences in Adaptation to Extreme Desiccation</title><author>Shaikhutdinov, Nurislam M ; Klink, Galya V ; Garushyants, Sofya K ; Kozlova, Olga S ; Cherkasov, Alexander V ; Kikawada, Takahiro ; Okuda, Takashi ; Pemba, Dylo ; Shagimardanova, Elena I ; Penin, Aleksey A ; Deviatiiarov, Ruslan M ; Gazizova, Guzel R ; Cornette, Richard ; Gusev, Oleg A ; Bazykin, Georgii A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-7d35ca7ef9a4712479e7f404ab628b268d9f366db65802b1b724fc9d7215b89e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Shaikhutdinov, Nurislam M</creatorcontrib><creatorcontrib>Klink, Galya V</creatorcontrib><creatorcontrib>Garushyants, Sofya K</creatorcontrib><creatorcontrib>Kozlova, Olga S</creatorcontrib><creatorcontrib>Cherkasov, Alexander V</creatorcontrib><creatorcontrib>Kikawada, Takahiro</creatorcontrib><creatorcontrib>Okuda, Takashi</creatorcontrib><creatorcontrib>Pemba, Dylo</creatorcontrib><creatorcontrib>Shagimardanova, Elena I</creatorcontrib><creatorcontrib>Penin, Aleksey A</creatorcontrib><creatorcontrib>Deviatiiarov, Ruslan M</creatorcontrib><creatorcontrib>Gazizova, Guzel R</creatorcontrib><creatorcontrib>Cornette, Richard</creatorcontrib><creatorcontrib>Gusev, Oleg A</creatorcontrib><creatorcontrib>Bazykin, Georgii A</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaikhutdinov, Nurislam M</au><au>Klink, Galya V</au><au>Garushyants, Sofya K</au><au>Kozlova, Olga S</au><au>Cherkasov, Alexander V</au><au>Kikawada, Takahiro</au><au>Okuda, Takashi</au><au>Pemba, Dylo</au><au>Shagimardanova, Elena I</au><au>Penin, Aleksey A</au><au>Deviatiiarov, Ruslan M</au><au>Gazizova, Guzel R</au><au>Cornette, Richard</au><au>Gusev, Oleg A</au><au>Bazykin, Georgii A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population Genomics of Two Closely Related Anhydrobiotic Midges Reveals Differences in Adaptation to Extreme Desiccation</atitle><jtitle>Genome biology and evolution</jtitle><date>2023-10-06</date><risdate>2023</risdate><volume>15</volume><issue>10</issue><issn>1759-6653</issn><eissn>1759-6653</eissn><abstract>Abstract The sleeping chironomid Polypedilum vanderplanki is capable of anhydrobiosis, a striking example of adaptation to extreme desiccation. Tolerance to complete desiccation in this species is associated with emergence of multiple paralogs of protective genes. One of the gene families highly expressed under anhydrobiosis and involved in this process is protein-L-isoaspartate (D-aspartate) O-methyltransferases (PIMTs). Recently, another closely related midge was discovered, Polypedilum pembai, which is able not only to tolerate desiccation but also to survive multiple desiccation–rehydration cycles. To investigate the evolution of anhydrobiosis in these species, we sequenced and assembled the genome of P. pembai and compared it with P. vanderplanki and also performed a population genomics analysis of several populations of P. vanderplanki and one population of P. pembai. We observe positive selection and radical changes in the genetic architecture of the PIMT locus between the two species, including its amplification in the P. pembai lineage. In particular, PIMT-4, the most highly expressed of these PIMTs, is present in six copies in the P. pembai; these copies differ in expression profiles, suggesting possible sub- or neofunctionalization. The nucleotide diversity of the genomic region carrying these new genes is decreased in P. pembai, but not in the orthologous region carrying the ancestral gene in P. vanderplanki, providing evidence for a selective sweep associated with postduplication adaptation in the former. Overall, our results suggest an extensive relatively recent and likely ongoing adaptation of the mechanisms of anhydrobiosis.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>37708413</pmid><doi>10.1093/gbe/evad169</doi><orcidid>https://orcid.org/0000-0003-2334-2751</orcidid><orcidid>https://orcid.org/0000-0002-2329-9282</orcidid><orcidid>https://orcid.org/0000-0001-8466-6958</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1759-6653
ispartof Genome biology and evolution, 2023-10, Vol.15 (10)
issn 1759-6653
1759-6653
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10558213
source Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
title Population Genomics of Two Closely Related Anhydrobiotic Midges Reveals Differences in Adaptation to Extreme Desiccation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20Genomics%20of%20Two%20Closely%20Related%20Anhydrobiotic%20Midges%20Reveals%20Differences%20in%20Adaptation%20to%20Extreme%20Desiccation&rft.jtitle=Genome%20biology%20and%20evolution&rft.au=Shaikhutdinov,%20Nurislam%20M&rft.date=2023-10-06&rft.volume=15&rft.issue=10&rft.issn=1759-6653&rft.eissn=1759-6653&rft_id=info:doi/10.1093/gbe/evad169&rft_dat=%3Cproquest_pubme%3E2865788529%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865788529&rft_id=info:pmid/37708413&rft_oup_id=10.1093/gbe/evad169&rfr_iscdi=true