Tailoring Interlayer Charge Transfer Dynamics in 2D Perovskites with Electroactive Spacer Molecules

The family of hybrid organic–inorganic lead-halide perovskites are the subject of intense interest for optoelectronic applications, from light-emitting diodes to photovoltaics to X-ray detectors. Due to the inert nature of most organic molecules, the inorganic sublattice generally dominates the elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2023-10, Vol.145 (39), p.21330-21343
Hauptverfasser: Boeije, Yorrick, Van Gompel, Wouter T. M., Zhang, Youcheng, Ghosh, Pratyush, Zelewski, Szymon J., Maufort, Arthur, Roose, Bart, Ooi, Zher Ying, Chowdhury, Rituparno, Devroey, Ilan, Lenaers, Stijn, Tew, Alasdair, Dai, Linjie, Dey, Krishanu, Salway, Hayden, Friend, Richard H., Sirringhaus, Henning, Lutsen, Laurence, Vanderzande, Dirk, Rao, Akshay, Stranks, Samuel D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21343
container_issue 39
container_start_page 21330
container_title Journal of the American Chemical Society
container_volume 145
creator Boeije, Yorrick
Van Gompel, Wouter T. M.
Zhang, Youcheng
Ghosh, Pratyush
Zelewski, Szymon J.
Maufort, Arthur
Roose, Bart
Ooi, Zher Ying
Chowdhury, Rituparno
Devroey, Ilan
Lenaers, Stijn
Tew, Alasdair
Dai, Linjie
Dey, Krishanu
Salway, Hayden
Friend, Richard H.
Sirringhaus, Henning
Lutsen, Laurence
Vanderzande, Dirk
Rao, Akshay
Stranks, Samuel D.
description The family of hybrid organic–inorganic lead-halide perovskites are the subject of intense interest for optoelectronic applications, from light-emitting diodes to photovoltaics to X-ray detectors. Due to the inert nature of most organic molecules, the inorganic sublattice generally dominates the electronic structure and therefore the optoelectronic properties of perovskites. Here, we use optically and electronically active carbazole-based Cz-C i molecules, where C i indicates an alkylammonium chain and i indicates the number of CH2 units in the chain, varying from 3 to 5, as cations in the two-dimensional (2D) perovskite structure. By investigating the photophysics and charge transport characteristics of (Cz-C i )2PbI4, we demonstrate a tunable electronic coupling between the inorganic lead-halide and organic layers. The strongest interlayer electronic coupling was found for (Cz-C3)2PbI4, where photothermal deflection spectroscopy results remarkably reveal an organic–inorganic charge transfer state. Ultrafast transient absorption spectroscopy measurements demonstrate ultrafast hole transfer from the photoexcited lead-halide layer to the Cz-C i molecules, the efficiency of which increases by varying the chain length from i = 5 to i = 3. The charge transfer results in long-lived carriers (10–100 ns) and quenched emission, in stark contrast to the fast (sub-ns) and efficient radiative decay of bound excitons in the more conventional 2D perovskite (PEA)2PbI4, in which phenylethylammonium (PEA) acts as an inert spacer. Electrical charge transport measurements further support enhanced interlayer coupling, showing increased out-of-plane carrier mobility from i = 5 to i = 3. This study paves the way for the rational design of 2D perovskites with combined inorganic–organic electronic properties through the wide range of functionalities available in the world of organics.
doi_str_mv 10.1021/jacs.3c05974
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10557141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2868119619</sourcerecordid><originalsourceid>FETCH-LOGICAL-a395t-ced07883a2dcc671e8b59360294b84188950461daef98ffaf86356337d713c6c3</originalsourceid><addsrcrecordid>eNptUU1rGzEQFaWhcdLe-gN07KGb6GP1sacSnE9ISCDuWcjaWVvuWnKkXRf_-8jEpBRyGt6bN2-YeQh9p-SMEkbPV9blM-6IaFT9CU2oYKQSlMnPaEIIYZXSkh-jk5xXBdZM0y_omCvFdVFOkJtZ38fkwwLfhQFSb3eQ8HRp0wLwLNmQu4Ivd8GuvcvYB8wu8ROkuM1__AAZ__XDEl_14IYUrRv8FvDzxroy9BALO_aQv6KjzvYZvh3qKfp9fTWb3lb3jzd304v7yvJGDJWDliituWWtc1JR0HPRcElYU891TbVuBKklbS10je4625XDhORctYpyJx0_Rb_efDfjfA2tgzAk25tN8mubdiZab_7vBL80i7g1lAihaE2Lw4-DQ4ovI-TBrH120Pc2QByzYVpqShtJmyL9-SZ1KeacoHvfQ4nZB2P2wZhDMP-c9-QqjimUT3wsfQUm4Y6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2868119619</pqid></control><display><type>article</type><title>Tailoring Interlayer Charge Transfer Dynamics in 2D Perovskites with Electroactive Spacer Molecules</title><source>ACS Publications</source><creator>Boeije, Yorrick ; Van Gompel, Wouter T. M. ; Zhang, Youcheng ; Ghosh, Pratyush ; Zelewski, Szymon J. ; Maufort, Arthur ; Roose, Bart ; Ooi, Zher Ying ; Chowdhury, Rituparno ; Devroey, Ilan ; Lenaers, Stijn ; Tew, Alasdair ; Dai, Linjie ; Dey, Krishanu ; Salway, Hayden ; Friend, Richard H. ; Sirringhaus, Henning ; Lutsen, Laurence ; Vanderzande, Dirk ; Rao, Akshay ; Stranks, Samuel D.</creator><creatorcontrib>Boeije, Yorrick ; Van Gompel, Wouter T. M. ; Zhang, Youcheng ; Ghosh, Pratyush ; Zelewski, Szymon J. ; Maufort, Arthur ; Roose, Bart ; Ooi, Zher Ying ; Chowdhury, Rituparno ; Devroey, Ilan ; Lenaers, Stijn ; Tew, Alasdair ; Dai, Linjie ; Dey, Krishanu ; Salway, Hayden ; Friend, Richard H. ; Sirringhaus, Henning ; Lutsen, Laurence ; Vanderzande, Dirk ; Rao, Akshay ; Stranks, Samuel D.</creatorcontrib><description>The family of hybrid organic–inorganic lead-halide perovskites are the subject of intense interest for optoelectronic applications, from light-emitting diodes to photovoltaics to X-ray detectors. Due to the inert nature of most organic molecules, the inorganic sublattice generally dominates the electronic structure and therefore the optoelectronic properties of perovskites. Here, we use optically and electronically active carbazole-based Cz-C i molecules, where C i indicates an alkylammonium chain and i indicates the number of CH2 units in the chain, varying from 3 to 5, as cations in the two-dimensional (2D) perovskite structure. By investigating the photophysics and charge transport characteristics of (Cz-C i )2PbI4, we demonstrate a tunable electronic coupling between the inorganic lead-halide and organic layers. The strongest interlayer electronic coupling was found for (Cz-C3)2PbI4, where photothermal deflection spectroscopy results remarkably reveal an organic–inorganic charge transfer state. Ultrafast transient absorption spectroscopy measurements demonstrate ultrafast hole transfer from the photoexcited lead-halide layer to the Cz-C i molecules, the efficiency of which increases by varying the chain length from i = 5 to i = 3. The charge transfer results in long-lived carriers (10–100 ns) and quenched emission, in stark contrast to the fast (sub-ns) and efficient radiative decay of bound excitons in the more conventional 2D perovskite (PEA)2PbI4, in which phenylethylammonium (PEA) acts as an inert spacer. Electrical charge transport measurements further support enhanced interlayer coupling, showing increased out-of-plane carrier mobility from i = 5 to i = 3. This study paves the way for the rational design of 2D perovskites with combined inorganic–organic electronic properties through the wide range of functionalities available in the world of organics.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c05974</identifier><identifier>PMID: 37738152</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2023-10, Vol.145 (39), p.21330-21343</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a395t-ced07883a2dcc671e8b59360294b84188950461daef98ffaf86356337d713c6c3</citedby><cites>FETCH-LOGICAL-a395t-ced07883a2dcc671e8b59360294b84188950461daef98ffaf86356337d713c6c3</cites><orcidid>0000-0002-1467-3041 ; 0000-0001-9827-6061 ; 0000-0001-9621-6014 ; 0000-0001-6565-6308 ; 0000-0002-4346-3123 ; 0000-0002-6037-3701 ; 0000-0002-8303-7292 ; 0000-0003-2364-9710 ; 0000-0002-4921-2069 ; 0000-0002-8173-5206 ; 0000-0002-0972-1475 ; 0000-0002-9110-124X ; 0000-0003-4261-0766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c05974$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c05974$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Boeije, Yorrick</creatorcontrib><creatorcontrib>Van Gompel, Wouter T. M.</creatorcontrib><creatorcontrib>Zhang, Youcheng</creatorcontrib><creatorcontrib>Ghosh, Pratyush</creatorcontrib><creatorcontrib>Zelewski, Szymon J.</creatorcontrib><creatorcontrib>Maufort, Arthur</creatorcontrib><creatorcontrib>Roose, Bart</creatorcontrib><creatorcontrib>Ooi, Zher Ying</creatorcontrib><creatorcontrib>Chowdhury, Rituparno</creatorcontrib><creatorcontrib>Devroey, Ilan</creatorcontrib><creatorcontrib>Lenaers, Stijn</creatorcontrib><creatorcontrib>Tew, Alasdair</creatorcontrib><creatorcontrib>Dai, Linjie</creatorcontrib><creatorcontrib>Dey, Krishanu</creatorcontrib><creatorcontrib>Salway, Hayden</creatorcontrib><creatorcontrib>Friend, Richard H.</creatorcontrib><creatorcontrib>Sirringhaus, Henning</creatorcontrib><creatorcontrib>Lutsen, Laurence</creatorcontrib><creatorcontrib>Vanderzande, Dirk</creatorcontrib><creatorcontrib>Rao, Akshay</creatorcontrib><creatorcontrib>Stranks, Samuel D.</creatorcontrib><title>Tailoring Interlayer Charge Transfer Dynamics in 2D Perovskites with Electroactive Spacer Molecules</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The family of hybrid organic–inorganic lead-halide perovskites are the subject of intense interest for optoelectronic applications, from light-emitting diodes to photovoltaics to X-ray detectors. Due to the inert nature of most organic molecules, the inorganic sublattice generally dominates the electronic structure and therefore the optoelectronic properties of perovskites. Here, we use optically and electronically active carbazole-based Cz-C i molecules, where C i indicates an alkylammonium chain and i indicates the number of CH2 units in the chain, varying from 3 to 5, as cations in the two-dimensional (2D) perovskite structure. By investigating the photophysics and charge transport characteristics of (Cz-C i )2PbI4, we demonstrate a tunable electronic coupling between the inorganic lead-halide and organic layers. The strongest interlayer electronic coupling was found for (Cz-C3)2PbI4, where photothermal deflection spectroscopy results remarkably reveal an organic–inorganic charge transfer state. Ultrafast transient absorption spectroscopy measurements demonstrate ultrafast hole transfer from the photoexcited lead-halide layer to the Cz-C i molecules, the efficiency of which increases by varying the chain length from i = 5 to i = 3. The charge transfer results in long-lived carriers (10–100 ns) and quenched emission, in stark contrast to the fast (sub-ns) and efficient radiative decay of bound excitons in the more conventional 2D perovskite (PEA)2PbI4, in which phenylethylammonium (PEA) acts as an inert spacer. Electrical charge transport measurements further support enhanced interlayer coupling, showing increased out-of-plane carrier mobility from i = 5 to i = 3. This study paves the way for the rational design of 2D perovskites with combined inorganic–organic electronic properties through the wide range of functionalities available in the world of organics.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptUU1rGzEQFaWhcdLe-gN07KGb6GP1sacSnE9ISCDuWcjaWVvuWnKkXRf_-8jEpBRyGt6bN2-YeQh9p-SMEkbPV9blM-6IaFT9CU2oYKQSlMnPaEIIYZXSkh-jk5xXBdZM0y_omCvFdVFOkJtZ38fkwwLfhQFSb3eQ8HRp0wLwLNmQu4Ivd8GuvcvYB8wu8ROkuM1__AAZ__XDEl_14IYUrRv8FvDzxroy9BALO_aQv6KjzvYZvh3qKfp9fTWb3lb3jzd304v7yvJGDJWDliituWWtc1JR0HPRcElYU891TbVuBKklbS10je4625XDhORctYpyJx0_Rb_efDfjfA2tgzAk25tN8mubdiZab_7vBL80i7g1lAihaE2Lw4-DQ4ovI-TBrH120Pc2QByzYVpqShtJmyL9-SZ1KeacoHvfQ4nZB2P2wZhDMP-c9-QqjimUT3wsfQUm4Y6A</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Boeije, Yorrick</creator><creator>Van Gompel, Wouter T. M.</creator><creator>Zhang, Youcheng</creator><creator>Ghosh, Pratyush</creator><creator>Zelewski, Szymon J.</creator><creator>Maufort, Arthur</creator><creator>Roose, Bart</creator><creator>Ooi, Zher Ying</creator><creator>Chowdhury, Rituparno</creator><creator>Devroey, Ilan</creator><creator>Lenaers, Stijn</creator><creator>Tew, Alasdair</creator><creator>Dai, Linjie</creator><creator>Dey, Krishanu</creator><creator>Salway, Hayden</creator><creator>Friend, Richard H.</creator><creator>Sirringhaus, Henning</creator><creator>Lutsen, Laurence</creator><creator>Vanderzande, Dirk</creator><creator>Rao, Akshay</creator><creator>Stranks, Samuel D.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1467-3041</orcidid><orcidid>https://orcid.org/0000-0001-9827-6061</orcidid><orcidid>https://orcid.org/0000-0001-9621-6014</orcidid><orcidid>https://orcid.org/0000-0001-6565-6308</orcidid><orcidid>https://orcid.org/0000-0002-4346-3123</orcidid><orcidid>https://orcid.org/0000-0002-6037-3701</orcidid><orcidid>https://orcid.org/0000-0002-8303-7292</orcidid><orcidid>https://orcid.org/0000-0003-2364-9710</orcidid><orcidid>https://orcid.org/0000-0002-4921-2069</orcidid><orcidid>https://orcid.org/0000-0002-8173-5206</orcidid><orcidid>https://orcid.org/0000-0002-0972-1475</orcidid><orcidid>https://orcid.org/0000-0002-9110-124X</orcidid><orcidid>https://orcid.org/0000-0003-4261-0766</orcidid></search><sort><creationdate>20231004</creationdate><title>Tailoring Interlayer Charge Transfer Dynamics in 2D Perovskites with Electroactive Spacer Molecules</title><author>Boeije, Yorrick ; Van Gompel, Wouter T. M. ; Zhang, Youcheng ; Ghosh, Pratyush ; Zelewski, Szymon J. ; Maufort, Arthur ; Roose, Bart ; Ooi, Zher Ying ; Chowdhury, Rituparno ; Devroey, Ilan ; Lenaers, Stijn ; Tew, Alasdair ; Dai, Linjie ; Dey, Krishanu ; Salway, Hayden ; Friend, Richard H. ; Sirringhaus, Henning ; Lutsen, Laurence ; Vanderzande, Dirk ; Rao, Akshay ; Stranks, Samuel D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a395t-ced07883a2dcc671e8b59360294b84188950461daef98ffaf86356337d713c6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boeije, Yorrick</creatorcontrib><creatorcontrib>Van Gompel, Wouter T. M.</creatorcontrib><creatorcontrib>Zhang, Youcheng</creatorcontrib><creatorcontrib>Ghosh, Pratyush</creatorcontrib><creatorcontrib>Zelewski, Szymon J.</creatorcontrib><creatorcontrib>Maufort, Arthur</creatorcontrib><creatorcontrib>Roose, Bart</creatorcontrib><creatorcontrib>Ooi, Zher Ying</creatorcontrib><creatorcontrib>Chowdhury, Rituparno</creatorcontrib><creatorcontrib>Devroey, Ilan</creatorcontrib><creatorcontrib>Lenaers, Stijn</creatorcontrib><creatorcontrib>Tew, Alasdair</creatorcontrib><creatorcontrib>Dai, Linjie</creatorcontrib><creatorcontrib>Dey, Krishanu</creatorcontrib><creatorcontrib>Salway, Hayden</creatorcontrib><creatorcontrib>Friend, Richard H.</creatorcontrib><creatorcontrib>Sirringhaus, Henning</creatorcontrib><creatorcontrib>Lutsen, Laurence</creatorcontrib><creatorcontrib>Vanderzande, Dirk</creatorcontrib><creatorcontrib>Rao, Akshay</creatorcontrib><creatorcontrib>Stranks, Samuel D.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boeije, Yorrick</au><au>Van Gompel, Wouter T. M.</au><au>Zhang, Youcheng</au><au>Ghosh, Pratyush</au><au>Zelewski, Szymon J.</au><au>Maufort, Arthur</au><au>Roose, Bart</au><au>Ooi, Zher Ying</au><au>Chowdhury, Rituparno</au><au>Devroey, Ilan</au><au>Lenaers, Stijn</au><au>Tew, Alasdair</au><au>Dai, Linjie</au><au>Dey, Krishanu</au><au>Salway, Hayden</au><au>Friend, Richard H.</au><au>Sirringhaus, Henning</au><au>Lutsen, Laurence</au><au>Vanderzande, Dirk</au><au>Rao, Akshay</au><au>Stranks, Samuel D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Interlayer Charge Transfer Dynamics in 2D Perovskites with Electroactive Spacer Molecules</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-10-04</date><risdate>2023</risdate><volume>145</volume><issue>39</issue><spage>21330</spage><epage>21343</epage><pages>21330-21343</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The family of hybrid organic–inorganic lead-halide perovskites are the subject of intense interest for optoelectronic applications, from light-emitting diodes to photovoltaics to X-ray detectors. Due to the inert nature of most organic molecules, the inorganic sublattice generally dominates the electronic structure and therefore the optoelectronic properties of perovskites. Here, we use optically and electronically active carbazole-based Cz-C i molecules, where C i indicates an alkylammonium chain and i indicates the number of CH2 units in the chain, varying from 3 to 5, as cations in the two-dimensional (2D) perovskite structure. By investigating the photophysics and charge transport characteristics of (Cz-C i )2PbI4, we demonstrate a tunable electronic coupling between the inorganic lead-halide and organic layers. The strongest interlayer electronic coupling was found for (Cz-C3)2PbI4, where photothermal deflection spectroscopy results remarkably reveal an organic–inorganic charge transfer state. Ultrafast transient absorption spectroscopy measurements demonstrate ultrafast hole transfer from the photoexcited lead-halide layer to the Cz-C i molecules, the efficiency of which increases by varying the chain length from i = 5 to i = 3. The charge transfer results in long-lived carriers (10–100 ns) and quenched emission, in stark contrast to the fast (sub-ns) and efficient radiative decay of bound excitons in the more conventional 2D perovskite (PEA)2PbI4, in which phenylethylammonium (PEA) acts as an inert spacer. Electrical charge transport measurements further support enhanced interlayer coupling, showing increased out-of-plane carrier mobility from i = 5 to i = 3. This study paves the way for the rational design of 2D perovskites with combined inorganic–organic electronic properties through the wide range of functionalities available in the world of organics.</abstract><pub>American Chemical Society</pub><pmid>37738152</pmid><doi>10.1021/jacs.3c05974</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1467-3041</orcidid><orcidid>https://orcid.org/0000-0001-9827-6061</orcidid><orcidid>https://orcid.org/0000-0001-9621-6014</orcidid><orcidid>https://orcid.org/0000-0001-6565-6308</orcidid><orcidid>https://orcid.org/0000-0002-4346-3123</orcidid><orcidid>https://orcid.org/0000-0002-6037-3701</orcidid><orcidid>https://orcid.org/0000-0002-8303-7292</orcidid><orcidid>https://orcid.org/0000-0003-2364-9710</orcidid><orcidid>https://orcid.org/0000-0002-4921-2069</orcidid><orcidid>https://orcid.org/0000-0002-8173-5206</orcidid><orcidid>https://orcid.org/0000-0002-0972-1475</orcidid><orcidid>https://orcid.org/0000-0002-9110-124X</orcidid><orcidid>https://orcid.org/0000-0003-4261-0766</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2023-10, Vol.145 (39), p.21330-21343
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10557141
source ACS Publications
title Tailoring Interlayer Charge Transfer Dynamics in 2D Perovskites with Electroactive Spacer Molecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Interlayer%20Charge%20Transfer%20Dynamics%20in%202D%20Perovskites%20with%20Electroactive%20Spacer%20Molecules&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Boeije,%20Yorrick&rft.date=2023-10-04&rft.volume=145&rft.issue=39&rft.spage=21330&rft.epage=21343&rft.pages=21330-21343&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c05974&rft_dat=%3Cproquest_pubme%3E2868119619%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2868119619&rft_id=info:pmid/37738152&rfr_iscdi=true