Integrating genetics with single-cell multiomic measurements across disease states identifies mechanisms of beta cell dysfunction in type 2 diabetes

Dysfunctional pancreatic islet beta cells are a hallmark of type 2 diabetes (T2D), but a comprehensive understanding of the underlying mechanisms, including gene dysregulation, is lacking. Here we integrate information from measurements of chromatin accessibility, gene expression and function in sin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2023-06, Vol.55 (6), p.984-994
Hauptverfasser: Wang, Gaowei, Chiou, Joshua, Zeng, Chun, Miller, Michael, Matta, Ileana, Han, Jee Yun, Kadakia, Nikita, Okino, Mei-Lin, Beebe, Elisha, Mallick, Medhavi, Camunas-Soler, Joan, dos Santos, Theodore, Dai, Xiao-Qing, Ellis, Cara, Hang, Yan, Kim, Seung K., MacDonald, Patrick E., Kandeel, Fouad R., Preissl, Sebastian, Gaulton, Kyle J., Sander, Maike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 994
container_issue 6
container_start_page 984
container_title Nature genetics
container_volume 55
creator Wang, Gaowei
Chiou, Joshua
Zeng, Chun
Miller, Michael
Matta, Ileana
Han, Jee Yun
Kadakia, Nikita
Okino, Mei-Lin
Beebe, Elisha
Mallick, Medhavi
Camunas-Soler, Joan
dos Santos, Theodore
Dai, Xiao-Qing
Ellis, Cara
Hang, Yan
Kim, Seung K.
MacDonald, Patrick E.
Kandeel, Fouad R.
Preissl, Sebastian
Gaulton, Kyle J.
Sander, Maike
description Dysfunctional pancreatic islet beta cells are a hallmark of type 2 diabetes (T2D), but a comprehensive understanding of the underlying mechanisms, including gene dysregulation, is lacking. Here we integrate information from measurements of chromatin accessibility, gene expression and function in single beta cells with genetic association data to nominate disease-causal gene regulatory changes in T2D. Using machine learning on chromatin accessibility data from 34 nondiabetic, pre-T2D and T2D donors, we identify two transcriptionally and functionally distinct beta cell subtypes that undergo an abundance shift during T2D progression. Subtype-defining accessible chromatin is enriched for T2D risk variants, suggesting a causal contribution of subtype identity to T2D. Both beta cell subtypes exhibit activation of a stress-response transcriptional program and functional impairment in T2D, which is probably induced by the T2D-associated metabolic environment. Our findings demonstrate the power of multimodal single-cell measurements combined with machine learning for characterizing mechanisms of complex diseases. Single-cell multiomic and functional characterization of human pancreatic islets identifies two beta cell subtypes correlated with type 2 diabetes progression that exhibit distinct gene regulatory programs and electrophysiological phenotypes.
doi_str_mv 10.1038/s41588-023-01397-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10550816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820025158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-8ac4fa7460847c2314858eb99a94c69e510970e1b617b2f20fba39886a1dc9903</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEoqXwBzggS1y4BGzHcewTQhUflSpxgbPlOJNdV4mzeByq_R_8YGZ3S_k4cPLI88zref1W1XPBXwvemDeoRGtMzWVTc9HYrrYPqnPRKl2LTpiHVHMtasUbfVY9QbzhXCjFzePqrOlkI7jV59WPq1Rgk32JacM2kKDEgOw2li1DupqgDjBNbF6nEpc5BjaDxzXDDKkg8yEviGyISLfAsPgCyOJAzThGKmcIW58izsiWkfVQPDvqDXsc1xRIM7GYWNnvgEnS8YQAPq0ejX5CeHZ3XlRfP7z_cvmpvv788ery3XUdVNeW2vigRt8pzY3qAjlSpjXQW-utCtpCSxY7DqLXouvlKPnY-8Yao70YgrW8uajennR3az_DEGjt7Ce3y3H2ee8WH93fnRS3brN8d4K3LTdCk8KrO4W8fFsBi5sjHhz6BMuKThrJuWwpJ0Jf_oPeLGtO5O9AaSM7qw6UPFHHn80w3m8juDuk7k6pO0rdHVN3loZe_OnjfuRXzAQ0JwCplTaQf7_9H9mfE0m7lQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826827948</pqid></control><display><type>article</type><title>Integrating genetics with single-cell multiomic measurements across disease states identifies mechanisms of beta cell dysfunction in type 2 diabetes</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Wang, Gaowei ; Chiou, Joshua ; Zeng, Chun ; Miller, Michael ; Matta, Ileana ; Han, Jee Yun ; Kadakia, Nikita ; Okino, Mei-Lin ; Beebe, Elisha ; Mallick, Medhavi ; Camunas-Soler, Joan ; dos Santos, Theodore ; Dai, Xiao-Qing ; Ellis, Cara ; Hang, Yan ; Kim, Seung K. ; MacDonald, Patrick E. ; Kandeel, Fouad R. ; Preissl, Sebastian ; Gaulton, Kyle J. ; Sander, Maike</creator><creatorcontrib>Wang, Gaowei ; Chiou, Joshua ; Zeng, Chun ; Miller, Michael ; Matta, Ileana ; Han, Jee Yun ; Kadakia, Nikita ; Okino, Mei-Lin ; Beebe, Elisha ; Mallick, Medhavi ; Camunas-Soler, Joan ; dos Santos, Theodore ; Dai, Xiao-Qing ; Ellis, Cara ; Hang, Yan ; Kim, Seung K. ; MacDonald, Patrick E. ; Kandeel, Fouad R. ; Preissl, Sebastian ; Gaulton, Kyle J. ; Sander, Maike</creatorcontrib><description>Dysfunctional pancreatic islet beta cells are a hallmark of type 2 diabetes (T2D), but a comprehensive understanding of the underlying mechanisms, including gene dysregulation, is lacking. Here we integrate information from measurements of chromatin accessibility, gene expression and function in single beta cells with genetic association data to nominate disease-causal gene regulatory changes in T2D. Using machine learning on chromatin accessibility data from 34 nondiabetic, pre-T2D and T2D donors, we identify two transcriptionally and functionally distinct beta cell subtypes that undergo an abundance shift during T2D progression. Subtype-defining accessible chromatin is enriched for T2D risk variants, suggesting a causal contribution of subtype identity to T2D. Both beta cell subtypes exhibit activation of a stress-response transcriptional program and functional impairment in T2D, which is probably induced by the T2D-associated metabolic environment. Our findings demonstrate the power of multimodal single-cell measurements combined with machine learning for characterizing mechanisms of complex diseases. Single-cell multiomic and functional characterization of human pancreatic islets identifies two beta cell subtypes correlated with type 2 diabetes progression that exhibit distinct gene regulatory programs and electrophysiological phenotypes.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-023-01397-9</identifier><identifier>PMID: 37231096</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>38/23 ; 45/91 ; 631/208/177 ; 631/553/1833 ; 692/699/2743/137/773 ; Accessibility ; Accuracy ; Agriculture ; Animal Genetics and Genomics ; Beta cells ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cell activation ; Cells ; Chromatin ; Chromatin - metabolism ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - genetics ; Disease ; Gene expression ; Gene Expression Regulation ; Gene Function ; Genetics ; Human Genetics ; Humans ; Information processing ; Insulin-Secreting Cells - metabolism ; Learning algorithms ; Machine learning ; Multiomics ; Transcription activation ; Variance analysis</subject><ispartof>Nature genetics, 2023-06, Vol.55 (6), p.984-994</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>Copyright Nature Publishing Group Jun 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-8ac4fa7460847c2314858eb99a94c69e510970e1b617b2f20fba39886a1dc9903</citedby><cites>FETCH-LOGICAL-c475t-8ac4fa7460847c2314858eb99a94c69e510970e1b617b2f20fba39886a1dc9903</cites><orcidid>0000-0002-4035-7915 ; 0000-0002-1884-1671 ; 0000-0002-9761-3609 ; 0000-0001-6148-8132 ; 0000-0001-8971-5616 ; 0000-0001-6135-7810 ; 0000-0003-1318-7161 ; 0000-0002-4618-0647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37231096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Gaowei</creatorcontrib><creatorcontrib>Chiou, Joshua</creatorcontrib><creatorcontrib>Zeng, Chun</creatorcontrib><creatorcontrib>Miller, Michael</creatorcontrib><creatorcontrib>Matta, Ileana</creatorcontrib><creatorcontrib>Han, Jee Yun</creatorcontrib><creatorcontrib>Kadakia, Nikita</creatorcontrib><creatorcontrib>Okino, Mei-Lin</creatorcontrib><creatorcontrib>Beebe, Elisha</creatorcontrib><creatorcontrib>Mallick, Medhavi</creatorcontrib><creatorcontrib>Camunas-Soler, Joan</creatorcontrib><creatorcontrib>dos Santos, Theodore</creatorcontrib><creatorcontrib>Dai, Xiao-Qing</creatorcontrib><creatorcontrib>Ellis, Cara</creatorcontrib><creatorcontrib>Hang, Yan</creatorcontrib><creatorcontrib>Kim, Seung K.</creatorcontrib><creatorcontrib>MacDonald, Patrick E.</creatorcontrib><creatorcontrib>Kandeel, Fouad R.</creatorcontrib><creatorcontrib>Preissl, Sebastian</creatorcontrib><creatorcontrib>Gaulton, Kyle J.</creatorcontrib><creatorcontrib>Sander, Maike</creatorcontrib><title>Integrating genetics with single-cell multiomic measurements across disease states identifies mechanisms of beta cell dysfunction in type 2 diabetes</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Dysfunctional pancreatic islet beta cells are a hallmark of type 2 diabetes (T2D), but a comprehensive understanding of the underlying mechanisms, including gene dysregulation, is lacking. Here we integrate information from measurements of chromatin accessibility, gene expression and function in single beta cells with genetic association data to nominate disease-causal gene regulatory changes in T2D. Using machine learning on chromatin accessibility data from 34 nondiabetic, pre-T2D and T2D donors, we identify two transcriptionally and functionally distinct beta cell subtypes that undergo an abundance shift during T2D progression. Subtype-defining accessible chromatin is enriched for T2D risk variants, suggesting a causal contribution of subtype identity to T2D. Both beta cell subtypes exhibit activation of a stress-response transcriptional program and functional impairment in T2D, which is probably induced by the T2D-associated metabolic environment. Our findings demonstrate the power of multimodal single-cell measurements combined with machine learning for characterizing mechanisms of complex diseases. Single-cell multiomic and functional characterization of human pancreatic islets identifies two beta cell subtypes correlated with type 2 diabetes progression that exhibit distinct gene regulatory programs and electrophysiological phenotypes.</description><subject>38/23</subject><subject>45/91</subject><subject>631/208/177</subject><subject>631/553/1833</subject><subject>692/699/2743/137/773</subject><subject>Accessibility</subject><subject>Accuracy</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Beta cells</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cell activation</subject><subject>Cells</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Disease</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Gene Function</subject><subject>Genetics</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Information processing</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Multiomics</subject><subject>Transcription activation</subject><subject>Variance analysis</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1v1DAQhiMEoqXwBzggS1y4BGzHcewTQhUflSpxgbPlOJNdV4mzeByq_R_8YGZ3S_k4cPLI88zref1W1XPBXwvemDeoRGtMzWVTc9HYrrYPqnPRKl2LTpiHVHMtasUbfVY9QbzhXCjFzePqrOlkI7jV59WPq1Rgk32JacM2kKDEgOw2li1DupqgDjBNbF6nEpc5BjaDxzXDDKkg8yEviGyISLfAsPgCyOJAzThGKmcIW58izsiWkfVQPDvqDXsc1xRIM7GYWNnvgEnS8YQAPq0ejX5CeHZ3XlRfP7z_cvmpvv788ery3XUdVNeW2vigRt8pzY3qAjlSpjXQW-utCtpCSxY7DqLXouvlKPnY-8Yao70YgrW8uajennR3az_DEGjt7Ce3y3H2ee8WH93fnRS3brN8d4K3LTdCk8KrO4W8fFsBi5sjHhz6BMuKThrJuWwpJ0Jf_oPeLGtO5O9AaSM7qw6UPFHHn80w3m8juDuk7k6pO0rdHVN3loZe_OnjfuRXzAQ0JwCplTaQf7_9H9mfE0m7lQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Wang, Gaowei</creator><creator>Chiou, Joshua</creator><creator>Zeng, Chun</creator><creator>Miller, Michael</creator><creator>Matta, Ileana</creator><creator>Han, Jee Yun</creator><creator>Kadakia, Nikita</creator><creator>Okino, Mei-Lin</creator><creator>Beebe, Elisha</creator><creator>Mallick, Medhavi</creator><creator>Camunas-Soler, Joan</creator><creator>dos Santos, Theodore</creator><creator>Dai, Xiao-Qing</creator><creator>Ellis, Cara</creator><creator>Hang, Yan</creator><creator>Kim, Seung K.</creator><creator>MacDonald, Patrick E.</creator><creator>Kandeel, Fouad R.</creator><creator>Preissl, Sebastian</creator><creator>Gaulton, Kyle J.</creator><creator>Sander, Maike</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4035-7915</orcidid><orcidid>https://orcid.org/0000-0002-1884-1671</orcidid><orcidid>https://orcid.org/0000-0002-9761-3609</orcidid><orcidid>https://orcid.org/0000-0001-6148-8132</orcidid><orcidid>https://orcid.org/0000-0001-8971-5616</orcidid><orcidid>https://orcid.org/0000-0001-6135-7810</orcidid><orcidid>https://orcid.org/0000-0003-1318-7161</orcidid><orcidid>https://orcid.org/0000-0002-4618-0647</orcidid></search><sort><creationdate>20230601</creationdate><title>Integrating genetics with single-cell multiomic measurements across disease states identifies mechanisms of beta cell dysfunction in type 2 diabetes</title><author>Wang, Gaowei ; Chiou, Joshua ; Zeng, Chun ; Miller, Michael ; Matta, Ileana ; Han, Jee Yun ; Kadakia, Nikita ; Okino, Mei-Lin ; Beebe, Elisha ; Mallick, Medhavi ; Camunas-Soler, Joan ; dos Santos, Theodore ; Dai, Xiao-Qing ; Ellis, Cara ; Hang, Yan ; Kim, Seung K. ; MacDonald, Patrick E. ; Kandeel, Fouad R. ; Preissl, Sebastian ; Gaulton, Kyle J. ; Sander, Maike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-8ac4fa7460847c2314858eb99a94c69e510970e1b617b2f20fba39886a1dc9903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>38/23</topic><topic>45/91</topic><topic>631/208/177</topic><topic>631/553/1833</topic><topic>692/699/2743/137/773</topic><topic>Accessibility</topic><topic>Accuracy</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Beta cells</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cell activation</topic><topic>Cells</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Disease</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Gene Function</topic><topic>Genetics</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Information processing</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Multiomics</topic><topic>Transcription activation</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Gaowei</creatorcontrib><creatorcontrib>Chiou, Joshua</creatorcontrib><creatorcontrib>Zeng, Chun</creatorcontrib><creatorcontrib>Miller, Michael</creatorcontrib><creatorcontrib>Matta, Ileana</creatorcontrib><creatorcontrib>Han, Jee Yun</creatorcontrib><creatorcontrib>Kadakia, Nikita</creatorcontrib><creatorcontrib>Okino, Mei-Lin</creatorcontrib><creatorcontrib>Beebe, Elisha</creatorcontrib><creatorcontrib>Mallick, Medhavi</creatorcontrib><creatorcontrib>Camunas-Soler, Joan</creatorcontrib><creatorcontrib>dos Santos, Theodore</creatorcontrib><creatorcontrib>Dai, Xiao-Qing</creatorcontrib><creatorcontrib>Ellis, Cara</creatorcontrib><creatorcontrib>Hang, Yan</creatorcontrib><creatorcontrib>Kim, Seung K.</creatorcontrib><creatorcontrib>MacDonald, Patrick E.</creatorcontrib><creatorcontrib>Kandeel, Fouad R.</creatorcontrib><creatorcontrib>Preissl, Sebastian</creatorcontrib><creatorcontrib>Gaulton, Kyle J.</creatorcontrib><creatorcontrib>Sander, Maike</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Gaowei</au><au>Chiou, Joshua</au><au>Zeng, Chun</au><au>Miller, Michael</au><au>Matta, Ileana</au><au>Han, Jee Yun</au><au>Kadakia, Nikita</au><au>Okino, Mei-Lin</au><au>Beebe, Elisha</au><au>Mallick, Medhavi</au><au>Camunas-Soler, Joan</au><au>dos Santos, Theodore</au><au>Dai, Xiao-Qing</au><au>Ellis, Cara</au><au>Hang, Yan</au><au>Kim, Seung K.</au><au>MacDonald, Patrick E.</au><au>Kandeel, Fouad R.</au><au>Preissl, Sebastian</au><au>Gaulton, Kyle J.</au><au>Sander, Maike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating genetics with single-cell multiomic measurements across disease states identifies mechanisms of beta cell dysfunction in type 2 diabetes</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>55</volume><issue>6</issue><spage>984</spage><epage>994</epage><pages>984-994</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Dysfunctional pancreatic islet beta cells are a hallmark of type 2 diabetes (T2D), but a comprehensive understanding of the underlying mechanisms, including gene dysregulation, is lacking. Here we integrate information from measurements of chromatin accessibility, gene expression and function in single beta cells with genetic association data to nominate disease-causal gene regulatory changes in T2D. Using machine learning on chromatin accessibility data from 34 nondiabetic, pre-T2D and T2D donors, we identify two transcriptionally and functionally distinct beta cell subtypes that undergo an abundance shift during T2D progression. Subtype-defining accessible chromatin is enriched for T2D risk variants, suggesting a causal contribution of subtype identity to T2D. Both beta cell subtypes exhibit activation of a stress-response transcriptional program and functional impairment in T2D, which is probably induced by the T2D-associated metabolic environment. Our findings demonstrate the power of multimodal single-cell measurements combined with machine learning for characterizing mechanisms of complex diseases. Single-cell multiomic and functional characterization of human pancreatic islets identifies two beta cell subtypes correlated with type 2 diabetes progression that exhibit distinct gene regulatory programs and electrophysiological phenotypes.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>37231096</pmid><doi>10.1038/s41588-023-01397-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4035-7915</orcidid><orcidid>https://orcid.org/0000-0002-1884-1671</orcidid><orcidid>https://orcid.org/0000-0002-9761-3609</orcidid><orcidid>https://orcid.org/0000-0001-6148-8132</orcidid><orcidid>https://orcid.org/0000-0001-8971-5616</orcidid><orcidid>https://orcid.org/0000-0001-6135-7810</orcidid><orcidid>https://orcid.org/0000-0003-1318-7161</orcidid><orcidid>https://orcid.org/0000-0002-4618-0647</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2023-06, Vol.55 (6), p.984-994
issn 1061-4036
1546-1718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10550816
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 38/23
45/91
631/208/177
631/553/1833
692/699/2743/137/773
Accessibility
Accuracy
Agriculture
Animal Genetics and Genomics
Beta cells
Biomedical and Life Sciences
Biomedicine
Cancer Research
Cell activation
Cells
Chromatin
Chromatin - metabolism
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - genetics
Disease
Gene expression
Gene Expression Regulation
Gene Function
Genetics
Human Genetics
Humans
Information processing
Insulin-Secreting Cells - metabolism
Learning algorithms
Machine learning
Multiomics
Transcription activation
Variance analysis
title Integrating genetics with single-cell multiomic measurements across disease states identifies mechanisms of beta cell dysfunction in type 2 diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20genetics%20with%20single-cell%20multiomic%20measurements%20across%20disease%20states%20identifies%20mechanisms%20of%20beta%20cell%20dysfunction%20in%20type%202%20diabetes&rft.jtitle=Nature%20genetics&rft.au=Wang,%20Gaowei&rft.date=2023-06-01&rft.volume=55&rft.issue=6&rft.spage=984&rft.epage=994&rft.pages=984-994&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-023-01397-9&rft_dat=%3Cproquest_pubme%3E2820025158%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826827948&rft_id=info:pmid/37231096&rfr_iscdi=true