Deciphering molecular interactions by proximity labeling
Many biological processes are executed and regulated through the molecular interactions of proteins and nucleic acids. Proximity labeling (PL) is a technology for tagging the endogenous interaction partners of specific protein ‘baits’, via genetic fusion to promiscuous enzymes that catalyze the gene...
Gespeichert in:
Veröffentlicht in: | Nature methods 2021-02, Vol.18 (2), p.133-143 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | 2 |
container_start_page | 133 |
container_title | Nature methods |
container_volume | 18 |
creator | Qin, Wei Cho, Kelvin F. Cavanagh, Peter E. Ting, Alice Y. |
description | Many biological processes are executed and regulated through the molecular interactions of proteins and nucleic acids. Proximity labeling (PL) is a technology for tagging the endogenous interaction partners of specific protein ‘baits’, via genetic fusion to promiscuous enzymes that catalyze the generation of diffusible reactive species in living cells. Tagged molecules that interact with baits can then be enriched and identified by mass spectrometry or nucleic acid sequencing. Here we review the development of PL technologies and highlight studies that have applied PL to the discovery and analysis of molecular interactions. In particular, we focus on the use of PL for mapping protein–protein, protein–RNA and protein–DNA interactions in living cells and organisms.
This Review describes proximity labeling methods that make use of peroxidases (APEX) or biotin ligases (TurboID, BioID), and their applications to studying protein–protein and protein–nucleic acid interactions in living systems. |
doi_str_mv | 10.1038/s41592-020-01010-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10548357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A655717283</galeid><sourcerecordid>A655717283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-86adb4968ea17b9028e83ec1175166f41d374bcce3ddfa5bcdcf5363613880ce3</originalsourceid><addsrcrecordid>eNp9kUtLxTAQhYMovv-ACym4rubddCXiGwQ3ug5pOr1G2qYmveL99-Z6HyqIZDFh8p3DTA5CRwSfEszUWeRElDTHFOeYpJOLDbRLBFd5QbDYXN1xSXbQXoyvGDPGqdhGO6kySjndReoKrBteILh-knW-BTttTchcP0IwdnS-j1k1y4bgP1znxlnWmgraBB-grca0EQ6XdR8931w_Xd7lD4-395cXD7kVhRhzJU1d8VIqMKSoSkwVKAaWkEIQKRtOalbwylpgdd0YUdnaNoJJJglTCqf2Pjpf-A7TqoPaQj8G0-ohuM6EmfbG6d8vvXvRE_-u0xdwxUSRHE6WDsG_TSGO-tVPQ5-G1pQrKSkuE7imJqYF7frGJzfbuWj1hRSiIAVVLFGnf1Dp1NA563toXOr_EtCFwAYfY4BmPTnBep6iXqSoU4r6K0Utkuj4585rySq2BLAFEId5cBC-V_rH9hPW26dG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486620948</pqid></control><display><type>article</type><title>Deciphering molecular interactions by proximity labeling</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Qin, Wei ; Cho, Kelvin F. ; Cavanagh, Peter E. ; Ting, Alice Y.</creator><creatorcontrib>Qin, Wei ; Cho, Kelvin F. ; Cavanagh, Peter E. ; Ting, Alice Y.</creatorcontrib><description>Many biological processes are executed and regulated through the molecular interactions of proteins and nucleic acids. Proximity labeling (PL) is a technology for tagging the endogenous interaction partners of specific protein ‘baits’, via genetic fusion to promiscuous enzymes that catalyze the generation of diffusible reactive species in living cells. Tagged molecules that interact with baits can then be enriched and identified by mass spectrometry or nucleic acid sequencing. Here we review the development of PL technologies and highlight studies that have applied PL to the discovery and analysis of molecular interactions. In particular, we focus on the use of PL for mapping protein–protein, protein–RNA and protein–DNA interactions in living cells and organisms.
This Review describes proximity labeling methods that make use of peroxidases (APEX) or biotin ligases (TurboID, BioID), and their applications to studying protein–protein and protein–nucleic acid interactions in living systems.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-020-01010-5</identifier><identifier>PMID: 33432242</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/45/147 ; 631/45/475/2290 ; 631/45/500 ; 631/92/96 ; Affinity labeling ; Baits ; Bioinformatics ; Biological activity ; Biological Microscopy ; Biological research ; Biological Techniques ; Biology, Experimental ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biotin ; Cell interaction ; Cells (biology) ; Deoxyribonucleic acid ; DNA ; Fusion protein ; Gene mapping ; Labeling ; Life Sciences ; Mass Spectrometry ; Mass spectroscopy ; Methods ; Molecular dynamics ; Molecular interactions ; Nucleic acids ; Nucleic Acids - metabolism ; Peptide mapping ; Protein Binding ; Protein Interaction Mapping - methods ; Protein-protein interactions ; Proteins ; Proteins - metabolism ; Proteomics ; Proximity ; Review Article ; Ribonucleic acid ; RNA ; Species diffusion</subject><ispartof>Nature methods, 2021-02, Vol.18 (2), p.133-143</ispartof><rights>Springer Nature America, Inc. 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-86adb4968ea17b9028e83ec1175166f41d374bcce3ddfa5bcdcf5363613880ce3</citedby><cites>FETCH-LOGICAL-c575t-86adb4968ea17b9028e83ec1175166f41d374bcce3ddfa5bcdcf5363613880ce3</cites><orcidid>0000-0002-8277-5226 ; 0000-0003-3146-664X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-020-01010-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-020-01010-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33432242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, Wei</creatorcontrib><creatorcontrib>Cho, Kelvin F.</creatorcontrib><creatorcontrib>Cavanagh, Peter E.</creatorcontrib><creatorcontrib>Ting, Alice Y.</creatorcontrib><title>Deciphering molecular interactions by proximity labeling</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Many biological processes are executed and regulated through the molecular interactions of proteins and nucleic acids. Proximity labeling (PL) is a technology for tagging the endogenous interaction partners of specific protein ‘baits’, via genetic fusion to promiscuous enzymes that catalyze the generation of diffusible reactive species in living cells. Tagged molecules that interact with baits can then be enriched and identified by mass spectrometry or nucleic acid sequencing. Here we review the development of PL technologies and highlight studies that have applied PL to the discovery and analysis of molecular interactions. In particular, we focus on the use of PL for mapping protein–protein, protein–RNA and protein–DNA interactions in living cells and organisms.
This Review describes proximity labeling methods that make use of peroxidases (APEX) or biotin ligases (TurboID, BioID), and their applications to studying protein–protein and protein–nucleic acid interactions in living systems.</description><subject>631/45/147</subject><subject>631/45/475/2290</subject><subject>631/45/500</subject><subject>631/92/96</subject><subject>Affinity labeling</subject><subject>Baits</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biological Microscopy</subject><subject>Biological research</subject><subject>Biological Techniques</subject><subject>Biology, Experimental</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biotin</subject><subject>Cell interaction</subject><subject>Cells (biology)</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Fusion protein</subject><subject>Gene mapping</subject><subject>Labeling</subject><subject>Life Sciences</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Methods</subject><subject>Molecular dynamics</subject><subject>Molecular interactions</subject><subject>Nucleic acids</subject><subject>Nucleic Acids - metabolism</subject><subject>Peptide mapping</subject><subject>Protein Binding</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Proteomics</subject><subject>Proximity</subject><subject>Review Article</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Species diffusion</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLxTAQhYMovv-ACym4rubddCXiGwQ3ug5pOr1G2qYmveL99-Z6HyqIZDFh8p3DTA5CRwSfEszUWeRElDTHFOeYpJOLDbRLBFd5QbDYXN1xSXbQXoyvGDPGqdhGO6kySjndReoKrBteILh-knW-BTttTchcP0IwdnS-j1k1y4bgP1znxlnWmgraBB-grca0EQ6XdR8931w_Xd7lD4-395cXD7kVhRhzJU1d8VIqMKSoSkwVKAaWkEIQKRtOalbwylpgdd0YUdnaNoJJJglTCqf2Pjpf-A7TqoPaQj8G0-ohuM6EmfbG6d8vvXvRE_-u0xdwxUSRHE6WDsG_TSGO-tVPQ5-G1pQrKSkuE7imJqYF7frGJzfbuWj1hRSiIAVVLFGnf1Dp1NA563toXOr_EtCFwAYfY4BmPTnBep6iXqSoU4r6K0Utkuj4585rySq2BLAFEId5cBC-V_rH9hPW26dG</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Qin, Wei</creator><creator>Cho, Kelvin F.</creator><creator>Cavanagh, Peter E.</creator><creator>Ting, Alice Y.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8277-5226</orcidid><orcidid>https://orcid.org/0000-0003-3146-664X</orcidid></search><sort><creationdate>20210201</creationdate><title>Deciphering molecular interactions by proximity labeling</title><author>Qin, Wei ; Cho, Kelvin F. ; Cavanagh, Peter E. ; Ting, Alice Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-86adb4968ea17b9028e83ec1175166f41d374bcce3ddfa5bcdcf5363613880ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/45/147</topic><topic>631/45/475/2290</topic><topic>631/45/500</topic><topic>631/92/96</topic><topic>Affinity labeling</topic><topic>Baits</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biological Microscopy</topic><topic>Biological research</topic><topic>Biological Techniques</topic><topic>Biology, Experimental</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biotin</topic><topic>Cell interaction</topic><topic>Cells (biology)</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Fusion protein</topic><topic>Gene mapping</topic><topic>Labeling</topic><topic>Life Sciences</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Methods</topic><topic>Molecular dynamics</topic><topic>Molecular interactions</topic><topic>Nucleic acids</topic><topic>Nucleic Acids - metabolism</topic><topic>Peptide mapping</topic><topic>Protein Binding</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Proteomics</topic><topic>Proximity</topic><topic>Review Article</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Species diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Wei</creatorcontrib><creatorcontrib>Cho, Kelvin F.</creatorcontrib><creatorcontrib>Cavanagh, Peter E.</creatorcontrib><creatorcontrib>Ting, Alice Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Wei</au><au>Cho, Kelvin F.</au><au>Cavanagh, Peter E.</au><au>Ting, Alice Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deciphering molecular interactions by proximity labeling</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>18</volume><issue>2</issue><spage>133</spage><epage>143</epage><pages>133-143</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Many biological processes are executed and regulated through the molecular interactions of proteins and nucleic acids. Proximity labeling (PL) is a technology for tagging the endogenous interaction partners of specific protein ‘baits’, via genetic fusion to promiscuous enzymes that catalyze the generation of diffusible reactive species in living cells. Tagged molecules that interact with baits can then be enriched and identified by mass spectrometry or nucleic acid sequencing. Here we review the development of PL technologies and highlight studies that have applied PL to the discovery and analysis of molecular interactions. In particular, we focus on the use of PL for mapping protein–protein, protein–RNA and protein–DNA interactions in living cells and organisms.
This Review describes proximity labeling methods that make use of peroxidases (APEX) or biotin ligases (TurboID, BioID), and their applications to studying protein–protein and protein–nucleic acid interactions in living systems.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33432242</pmid><doi>10.1038/s41592-020-01010-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8277-5226</orcidid><orcidid>https://orcid.org/0000-0003-3146-664X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2021-02, Vol.18 (2), p.133-143 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10548357 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/45/147 631/45/475/2290 631/45/500 631/92/96 Affinity labeling Baits Bioinformatics Biological activity Biological Microscopy Biological research Biological Techniques Biology, Experimental Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biotin Cell interaction Cells (biology) Deoxyribonucleic acid DNA Fusion protein Gene mapping Labeling Life Sciences Mass Spectrometry Mass spectroscopy Methods Molecular dynamics Molecular interactions Nucleic acids Nucleic Acids - metabolism Peptide mapping Protein Binding Protein Interaction Mapping - methods Protein-protein interactions Proteins Proteins - metabolism Proteomics Proximity Review Article Ribonucleic acid RNA Species diffusion |
title | Deciphering molecular interactions by proximity labeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deciphering%20molecular%20interactions%20by%20proximity%20labeling&rft.jtitle=Nature%20methods&rft.au=Qin,%20Wei&rft.date=2021-02-01&rft.volume=18&rft.issue=2&rft.spage=133&rft.epage=143&rft.pages=133-143&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-020-01010-5&rft_dat=%3Cgale_pubme%3EA655717283%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486620948&rft_id=info:pmid/33432242&rft_galeid=A655717283&rfr_iscdi=true |