Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins

A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome research 2023-08, Vol.33 (8), p.1242-1257
Hauptverfasser: Avolio, Rosario, Agliarulo, Ilenia, Criscuolo, Daniela, Sarnataro, Daniela, Auriemma, Margherita, De Lella, Sabrina, Pennacchio, Sara, Calice, Giovanni, Ng, Martin Y, Giorgi, Carlotta, Pinton, Paolo, Cooperman, Barry S, Landriscina, Matteo, Esposito, Franca, Matassa, Danilo Swann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1257
container_issue 8
container_start_page 1242
container_title Genome research
container_volume 33
creator Avolio, Rosario
Agliarulo, Ilenia
Criscuolo, Daniela
Sarnataro, Daniela
Auriemma, Margherita
De Lella, Sabrina
Pennacchio, Sara
Calice, Giovanni
Ng, Martin Y
Giorgi, Carlotta
Pinton, Paolo
Cooperman, Barry S
Landriscina, Matteo
Esposito, Franca
Matassa, Danilo Swann
description A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.
doi_str_mv 10.1101/gr.277755.123
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10547376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841880122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3313-5bbae39f4517a119f763875b53cf797365cc1d208f49b34a999341f2149a5ed83</originalsourceid><addsrcrecordid>eNpdkUGL1TAUhYsozvh06VYCbtz0mTRJk6xkeOgoDCgyrkOapm2GNLcmrfB-zfxV47xx0FmdC_fjnns4VfWa4D0hmLwf074RQnC-Jw19Up0TzlTNWauelhlLWSvMyVn1IucbjDFlUj6vzqhgUrRMnFe3h-MKGYK3yMQezX4FO0HskzcBrcnEHMzqISIXII6n0SSHLEDqfTSr69E6JdjGqahDMwRnt2ASspNZXILo0PX3i28EDZDuiHyMRbLPd4Z-XiCtCIZH1kuC1fmYX1bPBhOye3Wvu-rHp4_Xh8_11dfLL4eLq9pSSmjNu844qgbGiTCEqEG0VArecWoHoQRtubWkb7AcmOooM0opysjQEKYMd72ku-rD6e6ydbPrrYslfNBL8rNJRw3G6_830U96hF-aYM4ELXa76t39hQQ_N5dXPftsXQgmOtiybiQjUmLSNAV9-wi9gS3Fkq9QolWUK04LVZ8omyDn5IaHbwjWf7rXY9Kn7nXpvvBv_o3wQP8tm_4GwreuHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876935953</pqid></control><display><type>article</type><title>Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Avolio, Rosario ; Agliarulo, Ilenia ; Criscuolo, Daniela ; Sarnataro, Daniela ; Auriemma, Margherita ; De Lella, Sabrina ; Pennacchio, Sara ; Calice, Giovanni ; Ng, Martin Y ; Giorgi, Carlotta ; Pinton, Paolo ; Cooperman, Barry S ; Landriscina, Matteo ; Esposito, Franca ; Matassa, Danilo Swann</creator><creatorcontrib>Avolio, Rosario ; Agliarulo, Ilenia ; Criscuolo, Daniela ; Sarnataro, Daniela ; Auriemma, Margherita ; De Lella, Sabrina ; Pennacchio, Sara ; Calice, Giovanni ; Ng, Martin Y ; Giorgi, Carlotta ; Pinton, Paolo ; Cooperman, Barry S ; Landriscina, Matteo ; Esposito, Franca ; Matassa, Danilo Swann</creatorcontrib><description>A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.</description><identifier>ISSN: 1088-9051</identifier><identifier>ISSN: 1549-5469</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.277755.123</identifier><identifier>PMID: 37487647</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Energy metabolism ; HSP90 Heat-Shock Proteins - genetics ; HSP90 Heat-Shock Proteins - metabolism ; Humans ; Metabolism ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Molecular modelling ; mRNA ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Peptide Chain Elongation, Translational - genetics ; Peptide Chain Elongation, Translational - physiology ; Protein biosynthesis ; Protein Biosynthesis - genetics ; Protein Biosynthesis - physiology ; Protein turnover ; Respiration ; Ribosomes ; Ribosomes - genetics ; Ribosomes - metabolism ; Translation elongation ; Tumor suppressor genes</subject><ispartof>Genome research, 2023-08, Vol.33 (8), p.1242-1257</ispartof><rights>2023 Avolio et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Aug 2023</rights><rights>2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3313-5bbae39f4517a119f763875b53cf797365cc1d208f49b34a999341f2149a5ed83</citedby><cites>FETCH-LOGICAL-c3313-5bbae39f4517a119f763875b53cf797365cc1d208f49b34a999341f2149a5ed83</cites><orcidid>0000-0002-0565-6493 ; 0000-0002-4259-9221 ; 0000-0003-0591-9799 ; 0000-0001-7108-6508 ; 0000-0001-9340-6875 ; 0000-0002-6094-8384 ; 0000-0001-9573-1110 ; 0000-0002-7581-0169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547376/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547376/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37487647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Avolio, Rosario</creatorcontrib><creatorcontrib>Agliarulo, Ilenia</creatorcontrib><creatorcontrib>Criscuolo, Daniela</creatorcontrib><creatorcontrib>Sarnataro, Daniela</creatorcontrib><creatorcontrib>Auriemma, Margherita</creatorcontrib><creatorcontrib>De Lella, Sabrina</creatorcontrib><creatorcontrib>Pennacchio, Sara</creatorcontrib><creatorcontrib>Calice, Giovanni</creatorcontrib><creatorcontrib>Ng, Martin Y</creatorcontrib><creatorcontrib>Giorgi, Carlotta</creatorcontrib><creatorcontrib>Pinton, Paolo</creatorcontrib><creatorcontrib>Cooperman, Barry S</creatorcontrib><creatorcontrib>Landriscina, Matteo</creatorcontrib><creatorcontrib>Esposito, Franca</creatorcontrib><creatorcontrib>Matassa, Danilo Swann</creatorcontrib><title>Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.</description><subject>Energy metabolism</subject><subject>HSP90 Heat-Shock Proteins - genetics</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Humans</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Molecular modelling</subject><subject>mRNA</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Peptide Chain Elongation, Translational - genetics</subject><subject>Peptide Chain Elongation, Translational - physiology</subject><subject>Protein biosynthesis</subject><subject>Protein Biosynthesis - genetics</subject><subject>Protein Biosynthesis - physiology</subject><subject>Protein turnover</subject><subject>Respiration</subject><subject>Ribosomes</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>Translation elongation</subject><subject>Tumor suppressor genes</subject><issn>1088-9051</issn><issn>1549-5469</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUGL1TAUhYsozvh06VYCbtz0mTRJk6xkeOgoDCgyrkOapm2GNLcmrfB-zfxV47xx0FmdC_fjnns4VfWa4D0hmLwf074RQnC-Jw19Up0TzlTNWauelhlLWSvMyVn1IucbjDFlUj6vzqhgUrRMnFe3h-MKGYK3yMQezX4FO0HskzcBrcnEHMzqISIXII6n0SSHLEDqfTSr69E6JdjGqahDMwRnt2ASspNZXILo0PX3i28EDZDuiHyMRbLPd4Z-XiCtCIZH1kuC1fmYX1bPBhOye3Wvu-rHp4_Xh8_11dfLL4eLq9pSSmjNu844qgbGiTCEqEG0VArecWoHoQRtubWkb7AcmOooM0opysjQEKYMd72ku-rD6e6ydbPrrYslfNBL8rNJRw3G6_830U96hF-aYM4ELXa76t39hQQ_N5dXPftsXQgmOtiybiQjUmLSNAV9-wi9gS3Fkq9QolWUK04LVZ8omyDn5IaHbwjWf7rXY9Kn7nXpvvBv_o3wQP8tm_4GwreuHg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Avolio, Rosario</creator><creator>Agliarulo, Ilenia</creator><creator>Criscuolo, Daniela</creator><creator>Sarnataro, Daniela</creator><creator>Auriemma, Margherita</creator><creator>De Lella, Sabrina</creator><creator>Pennacchio, Sara</creator><creator>Calice, Giovanni</creator><creator>Ng, Martin Y</creator><creator>Giorgi, Carlotta</creator><creator>Pinton, Paolo</creator><creator>Cooperman, Barry S</creator><creator>Landriscina, Matteo</creator><creator>Esposito, Franca</creator><creator>Matassa, Danilo Swann</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0565-6493</orcidid><orcidid>https://orcid.org/0000-0002-4259-9221</orcidid><orcidid>https://orcid.org/0000-0003-0591-9799</orcidid><orcidid>https://orcid.org/0000-0001-7108-6508</orcidid><orcidid>https://orcid.org/0000-0001-9340-6875</orcidid><orcidid>https://orcid.org/0000-0002-6094-8384</orcidid><orcidid>https://orcid.org/0000-0001-9573-1110</orcidid><orcidid>https://orcid.org/0000-0002-7581-0169</orcidid></search><sort><creationdate>20230801</creationdate><title>Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins</title><author>Avolio, Rosario ; Agliarulo, Ilenia ; Criscuolo, Daniela ; Sarnataro, Daniela ; Auriemma, Margherita ; De Lella, Sabrina ; Pennacchio, Sara ; Calice, Giovanni ; Ng, Martin Y ; Giorgi, Carlotta ; Pinton, Paolo ; Cooperman, Barry S ; Landriscina, Matteo ; Esposito, Franca ; Matassa, Danilo Swann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3313-5bbae39f4517a119f763875b53cf797365cc1d208f49b34a999341f2149a5ed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy metabolism</topic><topic>HSP90 Heat-Shock Proteins - genetics</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Humans</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Molecular modelling</topic><topic>mRNA</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Peptide Chain Elongation, Translational - genetics</topic><topic>Peptide Chain Elongation, Translational - physiology</topic><topic>Protein biosynthesis</topic><topic>Protein Biosynthesis - genetics</topic><topic>Protein Biosynthesis - physiology</topic><topic>Protein turnover</topic><topic>Respiration</topic><topic>Ribosomes</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>Translation elongation</topic><topic>Tumor suppressor genes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avolio, Rosario</creatorcontrib><creatorcontrib>Agliarulo, Ilenia</creatorcontrib><creatorcontrib>Criscuolo, Daniela</creatorcontrib><creatorcontrib>Sarnataro, Daniela</creatorcontrib><creatorcontrib>Auriemma, Margherita</creatorcontrib><creatorcontrib>De Lella, Sabrina</creatorcontrib><creatorcontrib>Pennacchio, Sara</creatorcontrib><creatorcontrib>Calice, Giovanni</creatorcontrib><creatorcontrib>Ng, Martin Y</creatorcontrib><creatorcontrib>Giorgi, Carlotta</creatorcontrib><creatorcontrib>Pinton, Paolo</creatorcontrib><creatorcontrib>Cooperman, Barry S</creatorcontrib><creatorcontrib>Landriscina, Matteo</creatorcontrib><creatorcontrib>Esposito, Franca</creatorcontrib><creatorcontrib>Matassa, Danilo Swann</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avolio, Rosario</au><au>Agliarulo, Ilenia</au><au>Criscuolo, Daniela</au><au>Sarnataro, Daniela</au><au>Auriemma, Margherita</au><au>De Lella, Sabrina</au><au>Pennacchio, Sara</au><au>Calice, Giovanni</au><au>Ng, Martin Y</au><au>Giorgi, Carlotta</au><au>Pinton, Paolo</au><au>Cooperman, Barry S</au><au>Landriscina, Matteo</au><au>Esposito, Franca</au><au>Matassa, Danilo Swann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>33</volume><issue>8</issue><spage>1242</spage><epage>1257</epage><pages>1242-1257</pages><issn>1088-9051</issn><issn>1549-5469</issn><eissn>1549-5469</eissn><abstract>A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>37487647</pmid><doi>10.1101/gr.277755.123</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0565-6493</orcidid><orcidid>https://orcid.org/0000-0002-4259-9221</orcidid><orcidid>https://orcid.org/0000-0003-0591-9799</orcidid><orcidid>https://orcid.org/0000-0001-7108-6508</orcidid><orcidid>https://orcid.org/0000-0001-9340-6875</orcidid><orcidid>https://orcid.org/0000-0002-6094-8384</orcidid><orcidid>https://orcid.org/0000-0001-9573-1110</orcidid><orcidid>https://orcid.org/0000-0002-7581-0169</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-9051
ispartof Genome research, 2023-08, Vol.33 (8), p.1242-1257
issn 1088-9051
1549-5469
1549-5469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10547376
source MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Energy metabolism
HSP90 Heat-Shock Proteins - genetics
HSP90 Heat-Shock Proteins - metabolism
Humans
Metabolism
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Molecular Chaperones - genetics
Molecular Chaperones - metabolism
Molecular modelling
mRNA
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - pathology
Peptide Chain Elongation, Translational - genetics
Peptide Chain Elongation, Translational - physiology
Protein biosynthesis
Protein Biosynthesis - genetics
Protein Biosynthesis - physiology
Protein turnover
Respiration
Ribosomes
Ribosomes - genetics
Ribosomes - metabolism
Translation elongation
Tumor suppressor genes
title Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytosolic%20and%20mitochondrial%20translation%20elongation%20are%20coordinated%20through%20the%20molecular%20chaperone%20TRAP1%20for%20the%20synthesis%20and%20import%20of%20mitochondrial%20proteins&rft.jtitle=Genome%20research&rft.au=Avolio,%20Rosario&rft.date=2023-08-01&rft.volume=33&rft.issue=8&rft.spage=1242&rft.epage=1257&rft.pages=1242-1257&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.277755.123&rft_dat=%3Cproquest_pubme%3E2841880122%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2876935953&rft_id=info:pmid/37487647&rfr_iscdi=true