Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins
A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In th...
Gespeichert in:
Veröffentlicht in: | Genome research 2023-08, Vol.33 (8), p.1242-1257 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1257 |
---|---|
container_issue | 8 |
container_start_page | 1242 |
container_title | Genome research |
container_volume | 33 |
creator | Avolio, Rosario Agliarulo, Ilenia Criscuolo, Daniela Sarnataro, Daniela Auriemma, Margherita De Lella, Sabrina Pennacchio, Sara Calice, Giovanni Ng, Martin Y Giorgi, Carlotta Pinton, Paolo Cooperman, Barry S Landriscina, Matteo Esposito, Franca Matassa, Danilo Swann |
description | A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration. |
doi_str_mv | 10.1101/gr.277755.123 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10547376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841880122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3313-5bbae39f4517a119f763875b53cf797365cc1d208f49b34a999341f2149a5ed83</originalsourceid><addsrcrecordid>eNpdkUGL1TAUhYsozvh06VYCbtz0mTRJk6xkeOgoDCgyrkOapm2GNLcmrfB-zfxV47xx0FmdC_fjnns4VfWa4D0hmLwf074RQnC-Jw19Up0TzlTNWauelhlLWSvMyVn1IucbjDFlUj6vzqhgUrRMnFe3h-MKGYK3yMQezX4FO0HskzcBrcnEHMzqISIXII6n0SSHLEDqfTSr69E6JdjGqahDMwRnt2ASspNZXILo0PX3i28EDZDuiHyMRbLPd4Z-XiCtCIZH1kuC1fmYX1bPBhOye3Wvu-rHp4_Xh8_11dfLL4eLq9pSSmjNu844qgbGiTCEqEG0VArecWoHoQRtubWkb7AcmOooM0opysjQEKYMd72ku-rD6e6ydbPrrYslfNBL8rNJRw3G6_830U96hF-aYM4ELXa76t39hQQ_N5dXPftsXQgmOtiybiQjUmLSNAV9-wi9gS3Fkq9QolWUK04LVZ8omyDn5IaHbwjWf7rXY9Kn7nXpvvBv_o3wQP8tm_4GwreuHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876935953</pqid></control><display><type>article</type><title>Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Avolio, Rosario ; Agliarulo, Ilenia ; Criscuolo, Daniela ; Sarnataro, Daniela ; Auriemma, Margherita ; De Lella, Sabrina ; Pennacchio, Sara ; Calice, Giovanni ; Ng, Martin Y ; Giorgi, Carlotta ; Pinton, Paolo ; Cooperman, Barry S ; Landriscina, Matteo ; Esposito, Franca ; Matassa, Danilo Swann</creator><creatorcontrib>Avolio, Rosario ; Agliarulo, Ilenia ; Criscuolo, Daniela ; Sarnataro, Daniela ; Auriemma, Margherita ; De Lella, Sabrina ; Pennacchio, Sara ; Calice, Giovanni ; Ng, Martin Y ; Giorgi, Carlotta ; Pinton, Paolo ; Cooperman, Barry S ; Landriscina, Matteo ; Esposito, Franca ; Matassa, Danilo Swann</creatorcontrib><description>A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.</description><identifier>ISSN: 1088-9051</identifier><identifier>ISSN: 1549-5469</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.277755.123</identifier><identifier>PMID: 37487647</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Energy metabolism ; HSP90 Heat-Shock Proteins - genetics ; HSP90 Heat-Shock Proteins - metabolism ; Humans ; Metabolism ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Molecular modelling ; mRNA ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Peptide Chain Elongation, Translational - genetics ; Peptide Chain Elongation, Translational - physiology ; Protein biosynthesis ; Protein Biosynthesis - genetics ; Protein Biosynthesis - physiology ; Protein turnover ; Respiration ; Ribosomes ; Ribosomes - genetics ; Ribosomes - metabolism ; Translation elongation ; Tumor suppressor genes</subject><ispartof>Genome research, 2023-08, Vol.33 (8), p.1242-1257</ispartof><rights>2023 Avolio et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Aug 2023</rights><rights>2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3313-5bbae39f4517a119f763875b53cf797365cc1d208f49b34a999341f2149a5ed83</citedby><cites>FETCH-LOGICAL-c3313-5bbae39f4517a119f763875b53cf797365cc1d208f49b34a999341f2149a5ed83</cites><orcidid>0000-0002-0565-6493 ; 0000-0002-4259-9221 ; 0000-0003-0591-9799 ; 0000-0001-7108-6508 ; 0000-0001-9340-6875 ; 0000-0002-6094-8384 ; 0000-0001-9573-1110 ; 0000-0002-7581-0169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547376/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547376/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37487647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Avolio, Rosario</creatorcontrib><creatorcontrib>Agliarulo, Ilenia</creatorcontrib><creatorcontrib>Criscuolo, Daniela</creatorcontrib><creatorcontrib>Sarnataro, Daniela</creatorcontrib><creatorcontrib>Auriemma, Margherita</creatorcontrib><creatorcontrib>De Lella, Sabrina</creatorcontrib><creatorcontrib>Pennacchio, Sara</creatorcontrib><creatorcontrib>Calice, Giovanni</creatorcontrib><creatorcontrib>Ng, Martin Y</creatorcontrib><creatorcontrib>Giorgi, Carlotta</creatorcontrib><creatorcontrib>Pinton, Paolo</creatorcontrib><creatorcontrib>Cooperman, Barry S</creatorcontrib><creatorcontrib>Landriscina, Matteo</creatorcontrib><creatorcontrib>Esposito, Franca</creatorcontrib><creatorcontrib>Matassa, Danilo Swann</creatorcontrib><title>Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.</description><subject>Energy metabolism</subject><subject>HSP90 Heat-Shock Proteins - genetics</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Humans</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Molecular modelling</subject><subject>mRNA</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Peptide Chain Elongation, Translational - genetics</subject><subject>Peptide Chain Elongation, Translational - physiology</subject><subject>Protein biosynthesis</subject><subject>Protein Biosynthesis - genetics</subject><subject>Protein Biosynthesis - physiology</subject><subject>Protein turnover</subject><subject>Respiration</subject><subject>Ribosomes</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>Translation elongation</subject><subject>Tumor suppressor genes</subject><issn>1088-9051</issn><issn>1549-5469</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUGL1TAUhYsozvh06VYCbtz0mTRJk6xkeOgoDCgyrkOapm2GNLcmrfB-zfxV47xx0FmdC_fjnns4VfWa4D0hmLwf074RQnC-Jw19Up0TzlTNWauelhlLWSvMyVn1IucbjDFlUj6vzqhgUrRMnFe3h-MKGYK3yMQezX4FO0HskzcBrcnEHMzqISIXII6n0SSHLEDqfTSr69E6JdjGqahDMwRnt2ASspNZXILo0PX3i28EDZDuiHyMRbLPd4Z-XiCtCIZH1kuC1fmYX1bPBhOye3Wvu-rHp4_Xh8_11dfLL4eLq9pSSmjNu844qgbGiTCEqEG0VArecWoHoQRtubWkb7AcmOooM0opysjQEKYMd72ku-rD6e6ydbPrrYslfNBL8rNJRw3G6_830U96hF-aYM4ELXa76t39hQQ_N5dXPftsXQgmOtiybiQjUmLSNAV9-wi9gS3Fkq9QolWUK04LVZ8omyDn5IaHbwjWf7rXY9Kn7nXpvvBv_o3wQP8tm_4GwreuHg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Avolio, Rosario</creator><creator>Agliarulo, Ilenia</creator><creator>Criscuolo, Daniela</creator><creator>Sarnataro, Daniela</creator><creator>Auriemma, Margherita</creator><creator>De Lella, Sabrina</creator><creator>Pennacchio, Sara</creator><creator>Calice, Giovanni</creator><creator>Ng, Martin Y</creator><creator>Giorgi, Carlotta</creator><creator>Pinton, Paolo</creator><creator>Cooperman, Barry S</creator><creator>Landriscina, Matteo</creator><creator>Esposito, Franca</creator><creator>Matassa, Danilo Swann</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0565-6493</orcidid><orcidid>https://orcid.org/0000-0002-4259-9221</orcidid><orcidid>https://orcid.org/0000-0003-0591-9799</orcidid><orcidid>https://orcid.org/0000-0001-7108-6508</orcidid><orcidid>https://orcid.org/0000-0001-9340-6875</orcidid><orcidid>https://orcid.org/0000-0002-6094-8384</orcidid><orcidid>https://orcid.org/0000-0001-9573-1110</orcidid><orcidid>https://orcid.org/0000-0002-7581-0169</orcidid></search><sort><creationdate>20230801</creationdate><title>Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins</title><author>Avolio, Rosario ; Agliarulo, Ilenia ; Criscuolo, Daniela ; Sarnataro, Daniela ; Auriemma, Margherita ; De Lella, Sabrina ; Pennacchio, Sara ; Calice, Giovanni ; Ng, Martin Y ; Giorgi, Carlotta ; Pinton, Paolo ; Cooperman, Barry S ; Landriscina, Matteo ; Esposito, Franca ; Matassa, Danilo Swann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3313-5bbae39f4517a119f763875b53cf797365cc1d208f49b34a999341f2149a5ed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy metabolism</topic><topic>HSP90 Heat-Shock Proteins - genetics</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Humans</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Molecular modelling</topic><topic>mRNA</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Peptide Chain Elongation, Translational - genetics</topic><topic>Peptide Chain Elongation, Translational - physiology</topic><topic>Protein biosynthesis</topic><topic>Protein Biosynthesis - genetics</topic><topic>Protein Biosynthesis - physiology</topic><topic>Protein turnover</topic><topic>Respiration</topic><topic>Ribosomes</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>Translation elongation</topic><topic>Tumor suppressor genes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avolio, Rosario</creatorcontrib><creatorcontrib>Agliarulo, Ilenia</creatorcontrib><creatorcontrib>Criscuolo, Daniela</creatorcontrib><creatorcontrib>Sarnataro, Daniela</creatorcontrib><creatorcontrib>Auriemma, Margherita</creatorcontrib><creatorcontrib>De Lella, Sabrina</creatorcontrib><creatorcontrib>Pennacchio, Sara</creatorcontrib><creatorcontrib>Calice, Giovanni</creatorcontrib><creatorcontrib>Ng, Martin Y</creatorcontrib><creatorcontrib>Giorgi, Carlotta</creatorcontrib><creatorcontrib>Pinton, Paolo</creatorcontrib><creatorcontrib>Cooperman, Barry S</creatorcontrib><creatorcontrib>Landriscina, Matteo</creatorcontrib><creatorcontrib>Esposito, Franca</creatorcontrib><creatorcontrib>Matassa, Danilo Swann</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avolio, Rosario</au><au>Agliarulo, Ilenia</au><au>Criscuolo, Daniela</au><au>Sarnataro, Daniela</au><au>Auriemma, Margherita</au><au>De Lella, Sabrina</au><au>Pennacchio, Sara</au><au>Calice, Giovanni</au><au>Ng, Martin Y</au><au>Giorgi, Carlotta</au><au>Pinton, Paolo</au><au>Cooperman, Barry S</au><au>Landriscina, Matteo</au><au>Esposito, Franca</au><au>Matassa, Danilo Swann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>33</volume><issue>8</issue><spage>1242</spage><epage>1257</epage><pages>1242-1257</pages><issn>1088-9051</issn><issn>1549-5469</issn><eissn>1549-5469</eissn><abstract>A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>37487647</pmid><doi>10.1101/gr.277755.123</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0565-6493</orcidid><orcidid>https://orcid.org/0000-0002-4259-9221</orcidid><orcidid>https://orcid.org/0000-0003-0591-9799</orcidid><orcidid>https://orcid.org/0000-0001-7108-6508</orcidid><orcidid>https://orcid.org/0000-0001-9340-6875</orcidid><orcidid>https://orcid.org/0000-0002-6094-8384</orcidid><orcidid>https://orcid.org/0000-0001-9573-1110</orcidid><orcidid>https://orcid.org/0000-0002-7581-0169</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-9051 |
ispartof | Genome research, 2023-08, Vol.33 (8), p.1242-1257 |
issn | 1088-9051 1549-5469 1549-5469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10547376 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Energy metabolism HSP90 Heat-Shock Proteins - genetics HSP90 Heat-Shock Proteins - metabolism Humans Metabolism Mitochondria Mitochondria - genetics Mitochondria - metabolism Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Molecular Chaperones - genetics Molecular Chaperones - metabolism Molecular modelling mRNA Neoplasms - genetics Neoplasms - metabolism Neoplasms - pathology Peptide Chain Elongation, Translational - genetics Peptide Chain Elongation, Translational - physiology Protein biosynthesis Protein Biosynthesis - genetics Protein Biosynthesis - physiology Protein turnover Respiration Ribosomes Ribosomes - genetics Ribosomes - metabolism Translation elongation Tumor suppressor genes |
title | Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytosolic%20and%20mitochondrial%20translation%20elongation%20are%20coordinated%20through%20the%20molecular%20chaperone%20TRAP1%20for%20the%20synthesis%20and%20import%20of%20mitochondrial%20proteins&rft.jtitle=Genome%20research&rft.au=Avolio,%20Rosario&rft.date=2023-08-01&rft.volume=33&rft.issue=8&rft.spage=1242&rft.epage=1257&rft.pages=1242-1257&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.277755.123&rft_dat=%3Cproquest_pubme%3E2841880122%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2876935953&rft_id=info:pmid/37487647&rfr_iscdi=true |