Identification of prognostic metabolic genes in adrenocortical carcinoma and establishment of a prognostic nomogram: A bioinformatic study

Adrenocortical carcinoma is an invasive malignancy with poor prognosis, high recurrence rate and limited therapeutic options. Therefore, it is necessary to establish an effective method to diagnose and evaluate the prognosis of patients, so as to realize individualized treatment and improve their su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medicine (Baltimore) 2021-12, Vol.100 (50), p.e27864-e27864
Hauptverfasser: Chen, Qing, Ren, Ziyu, Liu, Dongfang, Jin, Zongrui, Wang, Xuan, Zhang, Rui, Liu, Qicong, Cheng, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e27864
container_issue 50
container_start_page e27864
container_title Medicine (Baltimore)
container_volume 100
creator Chen, Qing
Ren, Ziyu
Liu, Dongfang
Jin, Zongrui
Wang, Xuan
Zhang, Rui
Liu, Qicong
Cheng, Wei
description Adrenocortical carcinoma is an invasive malignancy with poor prognosis, high recurrence rate and limited therapeutic options. Therefore, it is necessary to establish an effective method to diagnose and evaluate the prognosis of patients, so as to realize individualized treatment and improve their survival rate.This study investigated metabolic genes that may be potential therapeutic targets for Adrenocortical carcinoma (ACC). Level 3 gene expression data from the ACC cohort and the relevant clinical information were obtained from The Cancer Genome Atlas (TCGA) database. To verify, other ACC datasets (GSE76021, GSE19750) were downloaded from the Gene Expression Omnibus (GEO) database. The ACC datasets from TCGA and GEO were used to screen metabolic genes through the Molecular Signatures Database using gene set enrichment analysis. Then, the overlapping metabolic genes of the 2 datasets were identified.A signature of five metabolic genes (CYP11B1, GSTM2, IRF9, RPL31, and UBE2C) was identified in patients with ACC. The signature could be used to divide the patients with ACC into high- and low-risk groups based on their median risk score. Multivariate Cox regression analysis was performed to determine the independent prognostic factors of ACC. Time-dependent receiver operating characteristic (ROC) curve analysis was conducted to assess the prediction accuracy of the prognostic signature. Last, a nomogram was established to assess the individualized prognosis prediction model.The results indicated that the signature of 5 metabolic genes had excellent predictive value for ACC. These findings might help improve personalized treatment and medical decisions.
doi_str_mv 10.1097/MD.0000000000027864
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10545245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611661226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3561-7e115d293c3048eeb3a75a1a27f7ef9c45e1f379cdbd472b0c830e85d3d1a043</originalsourceid><addsrcrecordid>eNpdkctuFDEQRS0EIkPgC5CQl2w6uPycZoOihEekRGyyt9y2e8bgtge7O1F-ga_Gw4QQ8MZW3VunyroIvQZyAqRX767OT8jfQ9Va8idoBYLJTvSSP0WrVhWd6hU_Qi9q_UYIMEX5c3TEeA9ryeQK_bxwPs1hDNbMISecR7wreZNynYPFk5_NkGN7bXzyFYeEjSs-ZZtL003E1hQbUp4MNslhX5s_hrqdGnTPMo9pzZY3xUzv8SkeQg5pzGUye6XOi7t7iZ6NJlb_6v4-RtefPl6ffekuv36-ODu97CwTEjrlAYSjPbOM8LX3AzNKGDBUjcqPveXCw8hUb93guKIDsWtG_Fo45sAQzo7RhwN2twyTd7ZtWkzUuxImU-50NkH_q6Sw1Zt8o4EILigXjfD2nlDyj6X9WU-hWh-jST4vVVMJICVQKpuVHay25FqLHx_mANH7FPXVuf4_xdb15vGKDz1_YmsGfjDc5jj7Ur_H5dYXvfUmztvfPKF62lFCASgo0rUKAPsFR_Cr4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611661226</pqid></control><display><type>article</type><title>Identification of prognostic metabolic genes in adrenocortical carcinoma and establishment of a prognostic nomogram: A bioinformatic study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wolters Kluwer Open Health</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chen, Qing ; Ren, Ziyu ; Liu, Dongfang ; Jin, Zongrui ; Wang, Xuan ; Zhang, Rui ; Liu, Qicong ; Cheng, Wei</creator><creatorcontrib>Chen, Qing ; Ren, Ziyu ; Liu, Dongfang ; Jin, Zongrui ; Wang, Xuan ; Zhang, Rui ; Liu, Qicong ; Cheng, Wei</creatorcontrib><description>Adrenocortical carcinoma is an invasive malignancy with poor prognosis, high recurrence rate and limited therapeutic options. Therefore, it is necessary to establish an effective method to diagnose and evaluate the prognosis of patients, so as to realize individualized treatment and improve their survival rate.This study investigated metabolic genes that may be potential therapeutic targets for Adrenocortical carcinoma (ACC). Level 3 gene expression data from the ACC cohort and the relevant clinical information were obtained from The Cancer Genome Atlas (TCGA) database. To verify, other ACC datasets (GSE76021, GSE19750) were downloaded from the Gene Expression Omnibus (GEO) database. The ACC datasets from TCGA and GEO were used to screen metabolic genes through the Molecular Signatures Database using gene set enrichment analysis. Then, the overlapping metabolic genes of the 2 datasets were identified.A signature of five metabolic genes (CYP11B1, GSTM2, IRF9, RPL31, and UBE2C) was identified in patients with ACC. The signature could be used to divide the patients with ACC into high- and low-risk groups based on their median risk score. Multivariate Cox regression analysis was performed to determine the independent prognostic factors of ACC. Time-dependent receiver operating characteristic (ROC) curve analysis was conducted to assess the prediction accuracy of the prognostic signature. Last, a nomogram was established to assess the individualized prognosis prediction model.The results indicated that the signature of 5 metabolic genes had excellent predictive value for ACC. These findings might help improve personalized treatment and medical decisions.</description><identifier>ISSN: 0025-7974</identifier><identifier>EISSN: 1536-5964</identifier><identifier>DOI: 10.1097/MD.0000000000027864</identifier><identifier>PMID: 34918636</identifier><language>eng</language><publisher>United States: Lippincott Williams &amp; Wilkins</publisher><subject>Adrenal Cortex Neoplasms - genetics ; Adrenal Cortex Neoplasms - mortality ; Adrenal Cortex Neoplasms - pathology ; Adrenocortical Carcinoma - genetics ; Adrenocortical Carcinoma - mortality ; Adrenocortical Carcinoma - pathology ; Computational Biology ; Humans ; Nomograms ; Observational Study ; Prognosis ; RNA, Messenger</subject><ispartof>Medicine (Baltimore), 2021-12, Vol.100 (50), p.e27864-e27864</ispartof><rights>Lippincott Williams &amp; Wilkins</rights><rights>Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.</rights><rights>Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3561-7e115d293c3048eeb3a75a1a27f7ef9c45e1f379cdbd472b0c830e85d3d1a043</cites><orcidid>0000-0002-6936-3235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545245/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545245/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34918636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Qing</creatorcontrib><creatorcontrib>Ren, Ziyu</creatorcontrib><creatorcontrib>Liu, Dongfang</creatorcontrib><creatorcontrib>Jin, Zongrui</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Liu, Qicong</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><title>Identification of prognostic metabolic genes in adrenocortical carcinoma and establishment of a prognostic nomogram: A bioinformatic study</title><title>Medicine (Baltimore)</title><addtitle>Medicine (Baltimore)</addtitle><description>Adrenocortical carcinoma is an invasive malignancy with poor prognosis, high recurrence rate and limited therapeutic options. Therefore, it is necessary to establish an effective method to diagnose and evaluate the prognosis of patients, so as to realize individualized treatment and improve their survival rate.This study investigated metabolic genes that may be potential therapeutic targets for Adrenocortical carcinoma (ACC). Level 3 gene expression data from the ACC cohort and the relevant clinical information were obtained from The Cancer Genome Atlas (TCGA) database. To verify, other ACC datasets (GSE76021, GSE19750) were downloaded from the Gene Expression Omnibus (GEO) database. The ACC datasets from TCGA and GEO were used to screen metabolic genes through the Molecular Signatures Database using gene set enrichment analysis. Then, the overlapping metabolic genes of the 2 datasets were identified.A signature of five metabolic genes (CYP11B1, GSTM2, IRF9, RPL31, and UBE2C) was identified in patients with ACC. The signature could be used to divide the patients with ACC into high- and low-risk groups based on their median risk score. Multivariate Cox regression analysis was performed to determine the independent prognostic factors of ACC. Time-dependent receiver operating characteristic (ROC) curve analysis was conducted to assess the prediction accuracy of the prognostic signature. Last, a nomogram was established to assess the individualized prognosis prediction model.The results indicated that the signature of 5 metabolic genes had excellent predictive value for ACC. These findings might help improve personalized treatment and medical decisions.</description><subject>Adrenal Cortex Neoplasms - genetics</subject><subject>Adrenal Cortex Neoplasms - mortality</subject><subject>Adrenal Cortex Neoplasms - pathology</subject><subject>Adrenocortical Carcinoma - genetics</subject><subject>Adrenocortical Carcinoma - mortality</subject><subject>Adrenocortical Carcinoma - pathology</subject><subject>Computational Biology</subject><subject>Humans</subject><subject>Nomograms</subject><subject>Observational Study</subject><subject>Prognosis</subject><subject>RNA, Messenger</subject><issn>0025-7974</issn><issn>1536-5964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctuFDEQRS0EIkPgC5CQl2w6uPycZoOihEekRGyyt9y2e8bgtge7O1F-ga_Gw4QQ8MZW3VunyroIvQZyAqRX767OT8jfQ9Va8idoBYLJTvSSP0WrVhWd6hU_Qi9q_UYIMEX5c3TEeA9ryeQK_bxwPs1hDNbMISecR7wreZNynYPFk5_NkGN7bXzyFYeEjSs-ZZtL003E1hQbUp4MNslhX5s_hrqdGnTPMo9pzZY3xUzv8SkeQg5pzGUye6XOi7t7iZ6NJlb_6v4-RtefPl6ffekuv36-ODu97CwTEjrlAYSjPbOM8LX3AzNKGDBUjcqPveXCw8hUb93guKIDsWtG_Fo45sAQzo7RhwN2twyTd7ZtWkzUuxImU-50NkH_q6Sw1Zt8o4EILigXjfD2nlDyj6X9WU-hWh-jST4vVVMJICVQKpuVHay25FqLHx_mANH7FPXVuf4_xdb15vGKDz1_YmsGfjDc5jj7Ur_H5dYXvfUmztvfPKF62lFCASgo0rUKAPsFR_Cr4g</recordid><startdate>20211217</startdate><enddate>20211217</enddate><creator>Chen, Qing</creator><creator>Ren, Ziyu</creator><creator>Liu, Dongfang</creator><creator>Jin, Zongrui</creator><creator>Wang, Xuan</creator><creator>Zhang, Rui</creator><creator>Liu, Qicong</creator><creator>Cheng, Wei</creator><general>Lippincott Williams &amp; Wilkins</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6936-3235</orcidid></search><sort><creationdate>20211217</creationdate><title>Identification of prognostic metabolic genes in adrenocortical carcinoma and establishment of a prognostic nomogram: A bioinformatic study</title><author>Chen, Qing ; Ren, Ziyu ; Liu, Dongfang ; Jin, Zongrui ; Wang, Xuan ; Zhang, Rui ; Liu, Qicong ; Cheng, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3561-7e115d293c3048eeb3a75a1a27f7ef9c45e1f379cdbd472b0c830e85d3d1a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adrenal Cortex Neoplasms - genetics</topic><topic>Adrenal Cortex Neoplasms - mortality</topic><topic>Adrenal Cortex Neoplasms - pathology</topic><topic>Adrenocortical Carcinoma - genetics</topic><topic>Adrenocortical Carcinoma - mortality</topic><topic>Adrenocortical Carcinoma - pathology</topic><topic>Computational Biology</topic><topic>Humans</topic><topic>Nomograms</topic><topic>Observational Study</topic><topic>Prognosis</topic><topic>RNA, Messenger</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qing</creatorcontrib><creatorcontrib>Ren, Ziyu</creatorcontrib><creatorcontrib>Liu, Dongfang</creatorcontrib><creatorcontrib>Jin, Zongrui</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Liu, Qicong</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medicine (Baltimore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qing</au><au>Ren, Ziyu</au><au>Liu, Dongfang</au><au>Jin, Zongrui</au><au>Wang, Xuan</au><au>Zhang, Rui</au><au>Liu, Qicong</au><au>Cheng, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of prognostic metabolic genes in adrenocortical carcinoma and establishment of a prognostic nomogram: A bioinformatic study</atitle><jtitle>Medicine (Baltimore)</jtitle><addtitle>Medicine (Baltimore)</addtitle><date>2021-12-17</date><risdate>2021</risdate><volume>100</volume><issue>50</issue><spage>e27864</spage><epage>e27864</epage><pages>e27864-e27864</pages><issn>0025-7974</issn><eissn>1536-5964</eissn><abstract>Adrenocortical carcinoma is an invasive malignancy with poor prognosis, high recurrence rate and limited therapeutic options. Therefore, it is necessary to establish an effective method to diagnose and evaluate the prognosis of patients, so as to realize individualized treatment and improve their survival rate.This study investigated metabolic genes that may be potential therapeutic targets for Adrenocortical carcinoma (ACC). Level 3 gene expression data from the ACC cohort and the relevant clinical information were obtained from The Cancer Genome Atlas (TCGA) database. To verify, other ACC datasets (GSE76021, GSE19750) were downloaded from the Gene Expression Omnibus (GEO) database. The ACC datasets from TCGA and GEO were used to screen metabolic genes through the Molecular Signatures Database using gene set enrichment analysis. Then, the overlapping metabolic genes of the 2 datasets were identified.A signature of five metabolic genes (CYP11B1, GSTM2, IRF9, RPL31, and UBE2C) was identified in patients with ACC. The signature could be used to divide the patients with ACC into high- and low-risk groups based on their median risk score. Multivariate Cox regression analysis was performed to determine the independent prognostic factors of ACC. Time-dependent receiver operating characteristic (ROC) curve analysis was conducted to assess the prediction accuracy of the prognostic signature. Last, a nomogram was established to assess the individualized prognosis prediction model.The results indicated that the signature of 5 metabolic genes had excellent predictive value for ACC. These findings might help improve personalized treatment and medical decisions.</abstract><cop>United States</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>34918636</pmid><doi>10.1097/MD.0000000000027864</doi><orcidid>https://orcid.org/0000-0002-6936-3235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-7974
ispartof Medicine (Baltimore), 2021-12, Vol.100 (50), p.e27864-e27864
issn 0025-7974
1536-5964
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10545245
source MEDLINE; DOAJ Directory of Open Access Journals; Wolters Kluwer Open Health; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Adrenal Cortex Neoplasms - genetics
Adrenal Cortex Neoplasms - mortality
Adrenal Cortex Neoplasms - pathology
Adrenocortical Carcinoma - genetics
Adrenocortical Carcinoma - mortality
Adrenocortical Carcinoma - pathology
Computational Biology
Humans
Nomograms
Observational Study
Prognosis
RNA, Messenger
title Identification of prognostic metabolic genes in adrenocortical carcinoma and establishment of a prognostic nomogram: A bioinformatic study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20prognostic%20metabolic%20genes%20in%20adrenocortical%20carcinoma%20and%20establishment%20of%20a%20prognostic%20nomogram:%20A%20bioinformatic%20study&rft.jtitle=Medicine%20(Baltimore)&rft.au=Chen,%20Qing&rft.date=2021-12-17&rft.volume=100&rft.issue=50&rft.spage=e27864&rft.epage=e27864&rft.pages=e27864-e27864&rft.issn=0025-7974&rft.eissn=1536-5964&rft_id=info:doi/10.1097/MD.0000000000027864&rft_dat=%3Cproquest_pubme%3E2611661226%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611661226&rft_id=info:pmid/34918636&rfr_iscdi=true