Learning Individual Survival Models from PanCancer Whole Transcriptome Data

Personalized medicine attempts to predict survival time for each patient, based on their individual tumour molecular profile. We investigate whether our survival learner in combination with a dimension reduction method can produce useful survival estimates for a variety of cancer patients. This pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2023-10, Vol.29 (19), p.3924-3936
Hauptverfasser: Kumar, Neeraj, Skubleny, Daniel, Parkes, Michael, Verma, Ruchika, Davis, Sacha, Kumar, Luke, Aissiou, Amira, Greiner, Russell
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3936
container_issue 19
container_start_page 3924
container_title Clinical cancer research
container_volume 29
creator Kumar, Neeraj
Skubleny, Daniel
Parkes, Michael
Verma, Ruchika
Davis, Sacha
Kumar, Luke
Aissiou, Amira
Greiner, Russell
description Personalized medicine attempts to predict survival time for each patient, based on their individual tumour molecular profile. We investigate whether our survival learner in combination with a dimension reduction method can produce useful survival estimates for a variety of cancer patients. This paper provides a method that learns a model for predicting the survival time for individual cancer patients from the PanCancer Atlas: given the (16335-dimensional) gene expression profiles from 10173 patients, each having one of 33 cancers, this method uses unsupervised NMF (non-negative matrix factorization) to re-express the gene expression data for each patient in terms of 100 learned NMF Factors. It then feeds these 100 Factors into the MTLR (Multi-Task Logistic Regression) learner to produce cancer-specific models for each of 20 cancers (with >50 uncensored instances); this produces "individual survival distributions" (ISDs), which provide survival probabilities at each future time for each individual patient - which provides a patient's risk score and estimated survival time. Our NMF-MTLR concordance indices outperformed the VAECox benchmark by 14.9% overall. We achieved optimal survival prediction using pan-cancer NMF in combination with cancer-specific MTLR models. We provide biological interpretation of the NMF model and clinical implications of ISDs for prognosis and therapeutic response prediction. NMF-MTLR provides many benefits over other models: superior model discrimination, superior calibration, meaningful survival time estimates, and accurate probabilistic estimates of survival over time for each individual patient. We advocate for the adoption of these cancer survival models in clinical and research settings.
doi_str_mv 10.1158/1078-0432.CCR-22-3493
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10543961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839741476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-659759c82d743dc69b562bb7fa32cf01451453071c611694d7ae89726be310223</originalsourceid><addsrcrecordid>eNpVUV1LwzAUDaLonP4EpY--VPOd9kmkfuJE0YmPIU3TLdImM2kH_ns7tonChXvhnnvu4RwAThA8R4hlFwiKLIWU4POieE0xTgnNyQ4YIcZESjBnu8O8xRyAwxg_IUQUQboPDoignEBORuBxYlRw1s2SB1fZpa161SRvfVja5TA8-co0MamDb5MX5QrltAnJx9w3JpkG5aIOdtH51iTXqlNHYK9WTTTHmz4G77c30-I-nTzfPRRXk1RThLuUs1ywXGe4EpRUmucl47gsRa0I1vWgkQ1FoECaI8RzWgllslxgXhqCIMZkDC7XvIu-bE2ljeuCauQi2FaFb-mVlf83zs7lzC8lgoySnKOB4WzDEPxXb2InWxu1aRrljO-jxBnJBUVU8AHK1lAdfIzB1L9_EJSrJOTKZblyWQ5JSIzlKonh7vSvyN-rrfXkB4FzhCs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839741476</pqid></control><display><type>article</type><title>Learning Individual Survival Models from PanCancer Whole Transcriptome Data</title><source>American Association for Cancer Research</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Kumar, Neeraj ; Skubleny, Daniel ; Parkes, Michael ; Verma, Ruchika ; Davis, Sacha ; Kumar, Luke ; Aissiou, Amira ; Greiner, Russell</creator><creatorcontrib>Kumar, Neeraj ; Skubleny, Daniel ; Parkes, Michael ; Verma, Ruchika ; Davis, Sacha ; Kumar, Luke ; Aissiou, Amira ; Greiner, Russell</creatorcontrib><description>Personalized medicine attempts to predict survival time for each patient, based on their individual tumour molecular profile. We investigate whether our survival learner in combination with a dimension reduction method can produce useful survival estimates for a variety of cancer patients. This paper provides a method that learns a model for predicting the survival time for individual cancer patients from the PanCancer Atlas: given the (16335-dimensional) gene expression profiles from 10173 patients, each having one of 33 cancers, this method uses unsupervised NMF (non-negative matrix factorization) to re-express the gene expression data for each patient in terms of 100 learned NMF Factors. It then feeds these 100 Factors into the MTLR (Multi-Task Logistic Regression) learner to produce cancer-specific models for each of 20 cancers (with &gt;50 uncensored instances); this produces "individual survival distributions" (ISDs), which provide survival probabilities at each future time for each individual patient - which provides a patient's risk score and estimated survival time. Our NMF-MTLR concordance indices outperformed the VAECox benchmark by 14.9% overall. We achieved optimal survival prediction using pan-cancer NMF in combination with cancer-specific MTLR models. We provide biological interpretation of the NMF model and clinical implications of ISDs for prognosis and therapeutic response prediction. NMF-MTLR provides many benefits over other models: superior model discrimination, superior calibration, meaningful survival time estimates, and accurate probabilistic estimates of survival over time for each individual patient. We advocate for the adoption of these cancer survival models in clinical and research settings.</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.CCR-22-3493</identifier><identifier>PMID: 37463063</identifier><language>eng</language><publisher>United States: American Association for Cancer Research</publisher><subject>Precision Medicine and Imaging</subject><ispartof>Clinical cancer research, 2023-10, Vol.29 (19), p.3924-3936</ispartof><rights>2023 The Authors; Published by the American Association for Cancer Research 2023 American Association for Cancer Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-659759c82d743dc69b562bb7fa32cf01451453071c611694d7ae89726be310223</citedby><cites>FETCH-LOGICAL-c412t-659759c82d743dc69b562bb7fa32cf01451453071c611694d7ae89726be310223</cites><orcidid>0000-0002-5129-2598 ; 0000-0002-1502-7535 ; 0000-0003-4870-128X ; 0000-0001-8327-934X ; 0000-0002-3221-3831 ; 0000-0002-3061-7744 ; 0000-0001-8243-6139 ; 0000-0003-0295-162X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3354,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37463063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Neeraj</creatorcontrib><creatorcontrib>Skubleny, Daniel</creatorcontrib><creatorcontrib>Parkes, Michael</creatorcontrib><creatorcontrib>Verma, Ruchika</creatorcontrib><creatorcontrib>Davis, Sacha</creatorcontrib><creatorcontrib>Kumar, Luke</creatorcontrib><creatorcontrib>Aissiou, Amira</creatorcontrib><creatorcontrib>Greiner, Russell</creatorcontrib><title>Learning Individual Survival Models from PanCancer Whole Transcriptome Data</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>Personalized medicine attempts to predict survival time for each patient, based on their individual tumour molecular profile. We investigate whether our survival learner in combination with a dimension reduction method can produce useful survival estimates for a variety of cancer patients. This paper provides a method that learns a model for predicting the survival time for individual cancer patients from the PanCancer Atlas: given the (16335-dimensional) gene expression profiles from 10173 patients, each having one of 33 cancers, this method uses unsupervised NMF (non-negative matrix factorization) to re-express the gene expression data for each patient in terms of 100 learned NMF Factors. It then feeds these 100 Factors into the MTLR (Multi-Task Logistic Regression) learner to produce cancer-specific models for each of 20 cancers (with &gt;50 uncensored instances); this produces "individual survival distributions" (ISDs), which provide survival probabilities at each future time for each individual patient - which provides a patient's risk score and estimated survival time. Our NMF-MTLR concordance indices outperformed the VAECox benchmark by 14.9% overall. We achieved optimal survival prediction using pan-cancer NMF in combination with cancer-specific MTLR models. We provide biological interpretation of the NMF model and clinical implications of ISDs for prognosis and therapeutic response prediction. NMF-MTLR provides many benefits over other models: superior model discrimination, superior calibration, meaningful survival time estimates, and accurate probabilistic estimates of survival over time for each individual patient. We advocate for the adoption of these cancer survival models in clinical and research settings.</description><subject>Precision Medicine and Imaging</subject><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUV1LwzAUDaLonP4EpY--VPOd9kmkfuJE0YmPIU3TLdImM2kH_ns7tonChXvhnnvu4RwAThA8R4hlFwiKLIWU4POieE0xTgnNyQ4YIcZESjBnu8O8xRyAwxg_IUQUQboPDoignEBORuBxYlRw1s2SB1fZpa161SRvfVja5TA8-co0MamDb5MX5QrltAnJx9w3JpkG5aIOdtH51iTXqlNHYK9WTTTHmz4G77c30-I-nTzfPRRXk1RThLuUs1ywXGe4EpRUmucl47gsRa0I1vWgkQ1FoECaI8RzWgllslxgXhqCIMZkDC7XvIu-bE2ljeuCauQi2FaFb-mVlf83zs7lzC8lgoySnKOB4WzDEPxXb2InWxu1aRrljO-jxBnJBUVU8AHK1lAdfIzB1L9_EJSrJOTKZblyWQ5JSIzlKonh7vSvyN-rrfXkB4FzhCs</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Kumar, Neeraj</creator><creator>Skubleny, Daniel</creator><creator>Parkes, Michael</creator><creator>Verma, Ruchika</creator><creator>Davis, Sacha</creator><creator>Kumar, Luke</creator><creator>Aissiou, Amira</creator><creator>Greiner, Russell</creator><general>American Association for Cancer Research</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5129-2598</orcidid><orcidid>https://orcid.org/0000-0002-1502-7535</orcidid><orcidid>https://orcid.org/0000-0003-4870-128X</orcidid><orcidid>https://orcid.org/0000-0001-8327-934X</orcidid><orcidid>https://orcid.org/0000-0002-3221-3831</orcidid><orcidid>https://orcid.org/0000-0002-3061-7744</orcidid><orcidid>https://orcid.org/0000-0001-8243-6139</orcidid><orcidid>https://orcid.org/0000-0003-0295-162X</orcidid></search><sort><creationdate>20231002</creationdate><title>Learning Individual Survival Models from PanCancer Whole Transcriptome Data</title><author>Kumar, Neeraj ; Skubleny, Daniel ; Parkes, Michael ; Verma, Ruchika ; Davis, Sacha ; Kumar, Luke ; Aissiou, Amira ; Greiner, Russell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-659759c82d743dc69b562bb7fa32cf01451453071c611694d7ae89726be310223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Precision Medicine and Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Neeraj</creatorcontrib><creatorcontrib>Skubleny, Daniel</creatorcontrib><creatorcontrib>Parkes, Michael</creatorcontrib><creatorcontrib>Verma, Ruchika</creatorcontrib><creatorcontrib>Davis, Sacha</creatorcontrib><creatorcontrib>Kumar, Luke</creatorcontrib><creatorcontrib>Aissiou, Amira</creatorcontrib><creatorcontrib>Greiner, Russell</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Neeraj</au><au>Skubleny, Daniel</au><au>Parkes, Michael</au><au>Verma, Ruchika</au><au>Davis, Sacha</au><au>Kumar, Luke</au><au>Aissiou, Amira</au><au>Greiner, Russell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Individual Survival Models from PanCancer Whole Transcriptome Data</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2023-10-02</date><risdate>2023</risdate><volume>29</volume><issue>19</issue><spage>3924</spage><epage>3936</epage><pages>3924-3936</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><abstract>Personalized medicine attempts to predict survival time for each patient, based on their individual tumour molecular profile. We investigate whether our survival learner in combination with a dimension reduction method can produce useful survival estimates for a variety of cancer patients. This paper provides a method that learns a model for predicting the survival time for individual cancer patients from the PanCancer Atlas: given the (16335-dimensional) gene expression profiles from 10173 patients, each having one of 33 cancers, this method uses unsupervised NMF (non-negative matrix factorization) to re-express the gene expression data for each patient in terms of 100 learned NMF Factors. It then feeds these 100 Factors into the MTLR (Multi-Task Logistic Regression) learner to produce cancer-specific models for each of 20 cancers (with &gt;50 uncensored instances); this produces "individual survival distributions" (ISDs), which provide survival probabilities at each future time for each individual patient - which provides a patient's risk score and estimated survival time. Our NMF-MTLR concordance indices outperformed the VAECox benchmark by 14.9% overall. We achieved optimal survival prediction using pan-cancer NMF in combination with cancer-specific MTLR models. We provide biological interpretation of the NMF model and clinical implications of ISDs for prognosis and therapeutic response prediction. NMF-MTLR provides many benefits over other models: superior model discrimination, superior calibration, meaningful survival time estimates, and accurate probabilistic estimates of survival over time for each individual patient. We advocate for the adoption of these cancer survival models in clinical and research settings.</abstract><cop>United States</cop><pub>American Association for Cancer Research</pub><pmid>37463063</pmid><doi>10.1158/1078-0432.CCR-22-3493</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5129-2598</orcidid><orcidid>https://orcid.org/0000-0002-1502-7535</orcidid><orcidid>https://orcid.org/0000-0003-4870-128X</orcidid><orcidid>https://orcid.org/0000-0001-8327-934X</orcidid><orcidid>https://orcid.org/0000-0002-3221-3831</orcidid><orcidid>https://orcid.org/0000-0002-3061-7744</orcidid><orcidid>https://orcid.org/0000-0001-8243-6139</orcidid><orcidid>https://orcid.org/0000-0003-0295-162X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-0432
ispartof Clinical cancer research, 2023-10, Vol.29 (19), p.3924-3936
issn 1078-0432
1557-3265
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10543961
source American Association for Cancer Research; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Precision Medicine and Imaging
title Learning Individual Survival Models from PanCancer Whole Transcriptome Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Individual%20Survival%20Models%20from%20PanCancer%20Whole%20Transcriptome%20Data&rft.jtitle=Clinical%20cancer%20research&rft.au=Kumar,%20Neeraj&rft.date=2023-10-02&rft.volume=29&rft.issue=19&rft.spage=3924&rft.epage=3936&rft.pages=3924-3936&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.CCR-22-3493&rft_dat=%3Cproquest_pubme%3E2839741476%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839741476&rft_id=info:pmid/37463063&rfr_iscdi=true