Cell wall proteins at low water potentials
We investigated the proteins extractable from cell walls of stem tissues when plants were subjected to low water potentials (low $\psi _{w}$). Dark-grown soybean seedlings (Glycine max [L.] Merr.) showed decreased stem growth when the roots were exposed to vermiculite having low water content ($\psi...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1987-09, Vol.85 (1), p.261-267 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 267 |
---|---|
container_issue | 1 |
container_start_page | 261 |
container_title | Plant physiology (Bethesda) |
container_volume | 85 |
creator | Bozarth, C.S Mullet, J.E Boyer, J.S |
description | We investigated the proteins extractable from cell walls of stem tissues when plants were subjected to low water potentials (low $\psi _{w}$). Dark-grown soybean seedlings (Glycine max [L.] Merr.) showed decreased stem growth when the roots were exposed to vermiculite having low water content ($\psi _{w}$ = -3 bar). After a time, growth resumed but at a reduced rate relative to the controls. The extractable protein increased in the cell walls as $\psi _{w}$ decreased, especially a 28-kilodalton protein in the young tissue. In contrast, a 70 kilodalton protein, mainly extractable from mature cell walls, appeared to decrease slightly at low $\psi _{w}$. No hydroxyproline was present in either protein, which shows that neither protein is related to extensin. The level of the 28 kilodalton protein increased in the cell wall of the dividing region soon after the initial growth inhibition, and it appeared in the elongating tissue at about the time growth resumed. The correlation between growth and these protein changes suggests that the two events could be related. |
doi_str_mv | 10.1104/pp.85.1.261 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1054238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4270894</jstor_id><sourcerecordid>4270894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-50787a69fcc8be90a5f22a5ffee49886978005056e5513524afebf29a02e0e7f3</originalsourceid><addsrcrecordid>eNpVkV2LVDEMhoso7rh65a3IIIKgzJj067Q3ggx-wYIXutelU9vdLmdOj23HxX9vZIZZvUlC8vAmvGHsKcIaEeTbeV4btcY113iPLVAJvuJKmvtsAUA1GGPP2KPWbgAABcqH7Ay11krrYcFeb-I4Lm89hbmWHvPUlr4vx3JLzR7rcqbm1LMf22P2IFGKT475nF1-_PB983l18fXTl837i1WQUvSVgsEMXtsUgtlGC14lzimkGKU1RtvBAChQOiqFQnHpU9wmbj3wCHFI4py9O-jO--0u_gi0vvrRzTXvfP3tis_u_8mUr91V-eUQlOTCkMCLg0BpPbsWco_hOpRpiqE7pQ2i5QS9Om6p5ec-tu52uQUyw0-x7JsbhJBWcIFEvjmQoZbWakynUxDc3w-4eXZGOXT0AaKf_3v9HXu0nICXR8C34MdU_RRyO3EDGTSgJuzZAbtpvdTTWPIBjJV34-SL81eVFC6_GYPWKHq4-AMS5p8k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733493231</pqid></control><display><type>article</type><title>Cell wall proteins at low water potentials</title><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bozarth, C.S ; Mullet, J.E ; Boyer, J.S</creator><creatorcontrib>Bozarth, C.S ; Mullet, J.E ; Boyer, J.S</creatorcontrib><description>We investigated the proteins extractable from cell walls of stem tissues when plants were subjected to low water potentials (low $\psi _{w}$). Dark-grown soybean seedlings (Glycine max [L.] Merr.) showed decreased stem growth when the roots were exposed to vermiculite having low water content ($\psi _{w}$ = -3 bar). After a time, growth resumed but at a reduced rate relative to the controls. The extractable protein increased in the cell walls as $\psi _{w}$ decreased, especially a 28-kilodalton protein in the young tissue. In contrast, a 70 kilodalton protein, mainly extractable from mature cell walls, appeared to decrease slightly at low $\psi _{w}$. No hydroxyproline was present in either protein, which shows that neither protein is related to extensin. The level of the 28 kilodalton protein increased in the cell wall of the dividing region soon after the initial growth inhibition, and it appeared in the elongating tissue at about the time growth resumed. The correlation between growth and these protein changes suggests that the two events could be related.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.85.1.261</identifier><identifier>PMID: 16665667</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>551000 - Physiological Systems ; ALARGAMIENTO DEL TALLO ; ALLONGEMENT DE LA TIGE ; Amino acids ; BASIC BIOLOGICAL SCIENCES ; Biological and medical sciences ; BIOLOGICAL EFFECTS ; BODY ; Cell biochemistry ; CELL CONSTITUENTS ; Cell growth ; Cell physiology ; CELL WALL ; CELL WALLS ; CONTENIDO DE HUMEDAD ; CORRELATIONS ; Development and Growth Regulation ; DROUGHTS ; Fundamental and applied biological sciences. Psychology ; Gels ; GLYCINE HISPIDA ; GLYCINE MAX ; GROWTH ; GROWTH RATE ; INDICE DE CRECIMIENTO ; INHIBITION ; LEGUMINOSAE ; MAGNOLIOPHYTA ; MAGNOLIOPSIDA ; MOISTURE CONTENT ; MOLECULAR WEIGHT ; ORGANIC COMPOUNDS ; PARED CELULAR ; PAROI CELLULAIRE ; PESO MOLECULAR ; PLANT GROWTH ; Plant physiology and development ; PLANT STEMS ; PLANT TISSUES ; PLANTS ; POIDS MOLECULAIRE ; POTENTIEL HYDRIQUE ; PROTEINAS ; PROTEINE ; PROTEINS ; SEEDLINGS ; Soybeans ; STEM ELONGATION ; TAUX DE CROISSANCE ; TENEUR EN EAU ; TENSION DE ABSORCION ; Tissue transplantation ; TISSUES ; Vermiculite ; WATER POTENTIAL</subject><ispartof>Plant physiology (Bethesda), 1987-09, Vol.85 (1), p.261-267</ispartof><rights>Copyright 1987 American Society of Plant Physiologists</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-50787a69fcc8be90a5f22a5ffee49886978005056e5513524afebf29a02e0e7f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4270894$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4270894$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7697716$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16665667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5681192$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bozarth, C.S</creatorcontrib><creatorcontrib>Mullet, J.E</creatorcontrib><creatorcontrib>Boyer, J.S</creatorcontrib><title>Cell wall proteins at low water potentials</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>We investigated the proteins extractable from cell walls of stem tissues when plants were subjected to low water potentials (low $\psi _{w}$). Dark-grown soybean seedlings (Glycine max [L.] Merr.) showed decreased stem growth when the roots were exposed to vermiculite having low water content ($\psi _{w}$ = -3 bar). After a time, growth resumed but at a reduced rate relative to the controls. The extractable protein increased in the cell walls as $\psi _{w}$ decreased, especially a 28-kilodalton protein in the young tissue. In contrast, a 70 kilodalton protein, mainly extractable from mature cell walls, appeared to decrease slightly at low $\psi _{w}$. No hydroxyproline was present in either protein, which shows that neither protein is related to extensin. The level of the 28 kilodalton protein increased in the cell wall of the dividing region soon after the initial growth inhibition, and it appeared in the elongating tissue at about the time growth resumed. The correlation between growth and these protein changes suggests that the two events could be related.</description><subject>551000 - Physiological Systems</subject><subject>ALARGAMIENTO DEL TALLO</subject><subject>ALLONGEMENT DE LA TIGE</subject><subject>Amino acids</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological and medical sciences</subject><subject>BIOLOGICAL EFFECTS</subject><subject>BODY</subject><subject>Cell biochemistry</subject><subject>CELL CONSTITUENTS</subject><subject>Cell growth</subject><subject>Cell physiology</subject><subject>CELL WALL</subject><subject>CELL WALLS</subject><subject>CONTENIDO DE HUMEDAD</subject><subject>CORRELATIONS</subject><subject>Development and Growth Regulation</subject><subject>DROUGHTS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gels</subject><subject>GLYCINE HISPIDA</subject><subject>GLYCINE MAX</subject><subject>GROWTH</subject><subject>GROWTH RATE</subject><subject>INDICE DE CRECIMIENTO</subject><subject>INHIBITION</subject><subject>LEGUMINOSAE</subject><subject>MAGNOLIOPHYTA</subject><subject>MAGNOLIOPSIDA</subject><subject>MOISTURE CONTENT</subject><subject>MOLECULAR WEIGHT</subject><subject>ORGANIC COMPOUNDS</subject><subject>PARED CELULAR</subject><subject>PAROI CELLULAIRE</subject><subject>PESO MOLECULAR</subject><subject>PLANT GROWTH</subject><subject>Plant physiology and development</subject><subject>PLANT STEMS</subject><subject>PLANT TISSUES</subject><subject>PLANTS</subject><subject>POIDS MOLECULAIRE</subject><subject>POTENTIEL HYDRIQUE</subject><subject>PROTEINAS</subject><subject>PROTEINE</subject><subject>PROTEINS</subject><subject>SEEDLINGS</subject><subject>Soybeans</subject><subject>STEM ELONGATION</subject><subject>TAUX DE CROISSANCE</subject><subject>TENEUR EN EAU</subject><subject>TENSION DE ABSORCION</subject><subject>Tissue transplantation</subject><subject>TISSUES</subject><subject>Vermiculite</subject><subject>WATER POTENTIAL</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNpVkV2LVDEMhoso7rh65a3IIIKgzJj067Q3ggx-wYIXutelU9vdLmdOj23HxX9vZIZZvUlC8vAmvGHsKcIaEeTbeV4btcY113iPLVAJvuJKmvtsAUA1GGPP2KPWbgAABcqH7Ay11krrYcFeb-I4Lm89hbmWHvPUlr4vx3JLzR7rcqbm1LMf22P2IFGKT475nF1-_PB983l18fXTl837i1WQUvSVgsEMXtsUgtlGC14lzimkGKU1RtvBAChQOiqFQnHpU9wmbj3wCHFI4py9O-jO--0u_gi0vvrRzTXvfP3tis_u_8mUr91V-eUQlOTCkMCLg0BpPbsWco_hOpRpiqE7pQ2i5QS9Om6p5ec-tu52uQUyw0-x7JsbhJBWcIFEvjmQoZbWakynUxDc3w-4eXZGOXT0AaKf_3v9HXu0nICXR8C34MdU_RRyO3EDGTSgJuzZAbtpvdTTWPIBjJV34-SL81eVFC6_GYPWKHq4-AMS5p8k</recordid><startdate>19870901</startdate><enddate>19870901</enddate><creator>Bozarth, C.S</creator><creator>Mullet, J.E</creator><creator>Boyer, J.S</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19870901</creationdate><title>Cell wall proteins at low water potentials</title><author>Bozarth, C.S ; Mullet, J.E ; Boyer, J.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-50787a69fcc8be90a5f22a5ffee49886978005056e5513524afebf29a02e0e7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>551000 - Physiological Systems</topic><topic>ALARGAMIENTO DEL TALLO</topic><topic>ALLONGEMENT DE LA TIGE</topic><topic>Amino acids</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological and medical sciences</topic><topic>BIOLOGICAL EFFECTS</topic><topic>BODY</topic><topic>Cell biochemistry</topic><topic>CELL CONSTITUENTS</topic><topic>Cell growth</topic><topic>Cell physiology</topic><topic>CELL WALL</topic><topic>CELL WALLS</topic><topic>CONTENIDO DE HUMEDAD</topic><topic>CORRELATIONS</topic><topic>Development and Growth Regulation</topic><topic>DROUGHTS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gels</topic><topic>GLYCINE HISPIDA</topic><topic>GLYCINE MAX</topic><topic>GROWTH</topic><topic>GROWTH RATE</topic><topic>INDICE DE CRECIMIENTO</topic><topic>INHIBITION</topic><topic>LEGUMINOSAE</topic><topic>MAGNOLIOPHYTA</topic><topic>MAGNOLIOPSIDA</topic><topic>MOISTURE CONTENT</topic><topic>MOLECULAR WEIGHT</topic><topic>ORGANIC COMPOUNDS</topic><topic>PARED CELULAR</topic><topic>PAROI CELLULAIRE</topic><topic>PESO MOLECULAR</topic><topic>PLANT GROWTH</topic><topic>Plant physiology and development</topic><topic>PLANT STEMS</topic><topic>PLANT TISSUES</topic><topic>PLANTS</topic><topic>POIDS MOLECULAIRE</topic><topic>POTENTIEL HYDRIQUE</topic><topic>PROTEINAS</topic><topic>PROTEINE</topic><topic>PROTEINS</topic><topic>SEEDLINGS</topic><topic>Soybeans</topic><topic>STEM ELONGATION</topic><topic>TAUX DE CROISSANCE</topic><topic>TENEUR EN EAU</topic><topic>TENSION DE ABSORCION</topic><topic>Tissue transplantation</topic><topic>TISSUES</topic><topic>Vermiculite</topic><topic>WATER POTENTIAL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bozarth, C.S</creatorcontrib><creatorcontrib>Mullet, J.E</creatorcontrib><creatorcontrib>Boyer, J.S</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozarth, C.S</au><au>Mullet, J.E</au><au>Boyer, J.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell wall proteins at low water potentials</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>1987-09-01</date><risdate>1987</risdate><volume>85</volume><issue>1</issue><spage>261</spage><epage>267</epage><pages>261-267</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>We investigated the proteins extractable from cell walls of stem tissues when plants were subjected to low water potentials (low $\psi _{w}$). Dark-grown soybean seedlings (Glycine max [L.] Merr.) showed decreased stem growth when the roots were exposed to vermiculite having low water content ($\psi _{w}$ = -3 bar). After a time, growth resumed but at a reduced rate relative to the controls. The extractable protein increased in the cell walls as $\psi _{w}$ decreased, especially a 28-kilodalton protein in the young tissue. In contrast, a 70 kilodalton protein, mainly extractable from mature cell walls, appeared to decrease slightly at low $\psi _{w}$. No hydroxyproline was present in either protein, which shows that neither protein is related to extensin. The level of the 28 kilodalton protein increased in the cell wall of the dividing region soon after the initial growth inhibition, and it appeared in the elongating tissue at about the time growth resumed. The correlation between growth and these protein changes suggests that the two events could be related.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>16665667</pmid><doi>10.1104/pp.85.1.261</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 1987-09, Vol.85 (1), p.261-267 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1054238 |
source | JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | 551000 - Physiological Systems ALARGAMIENTO DEL TALLO ALLONGEMENT DE LA TIGE Amino acids BASIC BIOLOGICAL SCIENCES Biological and medical sciences BIOLOGICAL EFFECTS BODY Cell biochemistry CELL CONSTITUENTS Cell growth Cell physiology CELL WALL CELL WALLS CONTENIDO DE HUMEDAD CORRELATIONS Development and Growth Regulation DROUGHTS Fundamental and applied biological sciences. Psychology Gels GLYCINE HISPIDA GLYCINE MAX GROWTH GROWTH RATE INDICE DE CRECIMIENTO INHIBITION LEGUMINOSAE MAGNOLIOPHYTA MAGNOLIOPSIDA MOISTURE CONTENT MOLECULAR WEIGHT ORGANIC COMPOUNDS PARED CELULAR PAROI CELLULAIRE PESO MOLECULAR PLANT GROWTH Plant physiology and development PLANT STEMS PLANT TISSUES PLANTS POIDS MOLECULAIRE POTENTIEL HYDRIQUE PROTEINAS PROTEINE PROTEINS SEEDLINGS Soybeans STEM ELONGATION TAUX DE CROISSANCE TENEUR EN EAU TENSION DE ABSORCION Tissue transplantation TISSUES Vermiculite WATER POTENTIAL |
title | Cell wall proteins at low water potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20wall%20proteins%20at%20low%20water%20potentials&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Bozarth,%20C.S&rft.date=1987-09-01&rft.volume=85&rft.issue=1&rft.spage=261&rft.epage=267&rft.pages=261-267&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.85.1.261&rft_dat=%3Cjstor_pubme%3E4270894%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733493231&rft_id=info:pmid/16665667&rft_jstor_id=4270894&rfr_iscdi=true |