Cell wall proteins at low water potentials

We investigated the proteins extractable from cell walls of stem tissues when plants were subjected to low water potentials (low $\psi _{w}$). Dark-grown soybean seedlings (Glycine max [L.] Merr.) showed decreased stem growth when the roots were exposed to vermiculite having low water content ($\psi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1987-09, Vol.85 (1), p.261-267
Hauptverfasser: Bozarth, C.S, Mullet, J.E, Boyer, J.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 267
container_issue 1
container_start_page 261
container_title Plant physiology (Bethesda)
container_volume 85
creator Bozarth, C.S
Mullet, J.E
Boyer, J.S
description We investigated the proteins extractable from cell walls of stem tissues when plants were subjected to low water potentials (low $\psi _{w}$). Dark-grown soybean seedlings (Glycine max [L.] Merr.) showed decreased stem growth when the roots were exposed to vermiculite having low water content ($\psi _{w}$ = -3 bar). After a time, growth resumed but at a reduced rate relative to the controls. The extractable protein increased in the cell walls as $\psi _{w}$ decreased, especially a 28-kilodalton protein in the young tissue. In contrast, a 70 kilodalton protein, mainly extractable from mature cell walls, appeared to decrease slightly at low $\psi _{w}$. No hydroxyproline was present in either protein, which shows that neither protein is related to extensin. The level of the 28 kilodalton protein increased in the cell wall of the dividing region soon after the initial growth inhibition, and it appeared in the elongating tissue at about the time growth resumed. The correlation between growth and these protein changes suggests that the two events could be related.
doi_str_mv 10.1104/pp.85.1.261
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1054238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4270894</jstor_id><sourcerecordid>4270894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-50787a69fcc8be90a5f22a5ffee49886978005056e5513524afebf29a02e0e7f3</originalsourceid><addsrcrecordid>eNpVkV2LVDEMhoso7rh65a3IIIKgzJj067Q3ggx-wYIXutelU9vdLmdOj23HxX9vZIZZvUlC8vAmvGHsKcIaEeTbeV4btcY113iPLVAJvuJKmvtsAUA1GGPP2KPWbgAABcqH7Ay11krrYcFeb-I4Lm89hbmWHvPUlr4vx3JLzR7rcqbm1LMf22P2IFGKT475nF1-_PB983l18fXTl837i1WQUvSVgsEMXtsUgtlGC14lzimkGKU1RtvBAChQOiqFQnHpU9wmbj3wCHFI4py9O-jO--0u_gi0vvrRzTXvfP3tis_u_8mUr91V-eUQlOTCkMCLg0BpPbsWco_hOpRpiqE7pQ2i5QS9Om6p5ec-tu52uQUyw0-x7JsbhJBWcIFEvjmQoZbWakynUxDc3w-4eXZGOXT0AaKf_3v9HXu0nICXR8C34MdU_RRyO3EDGTSgJuzZAbtpvdTTWPIBjJV34-SL81eVFC6_GYPWKHq4-AMS5p8k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733493231</pqid></control><display><type>article</type><title>Cell wall proteins at low water potentials</title><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bozarth, C.S ; Mullet, J.E ; Boyer, J.S</creator><creatorcontrib>Bozarth, C.S ; Mullet, J.E ; Boyer, J.S</creatorcontrib><description>We investigated the proteins extractable from cell walls of stem tissues when plants were subjected to low water potentials (low $\psi _{w}$). Dark-grown soybean seedlings (Glycine max [L.] Merr.) showed decreased stem growth when the roots were exposed to vermiculite having low water content ($\psi _{w}$ = -3 bar). After a time, growth resumed but at a reduced rate relative to the controls. The extractable protein increased in the cell walls as $\psi _{w}$ decreased, especially a 28-kilodalton protein in the young tissue. In contrast, a 70 kilodalton protein, mainly extractable from mature cell walls, appeared to decrease slightly at low $\psi _{w}$. No hydroxyproline was present in either protein, which shows that neither protein is related to extensin. The level of the 28 kilodalton protein increased in the cell wall of the dividing region soon after the initial growth inhibition, and it appeared in the elongating tissue at about the time growth resumed. The correlation between growth and these protein changes suggests that the two events could be related.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.85.1.261</identifier><identifier>PMID: 16665667</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>551000 - Physiological Systems ; ALARGAMIENTO DEL TALLO ; ALLONGEMENT DE LA TIGE ; Amino acids ; BASIC BIOLOGICAL SCIENCES ; Biological and medical sciences ; BIOLOGICAL EFFECTS ; BODY ; Cell biochemistry ; CELL CONSTITUENTS ; Cell growth ; Cell physiology ; CELL WALL ; CELL WALLS ; CONTENIDO DE HUMEDAD ; CORRELATIONS ; Development and Growth Regulation ; DROUGHTS ; Fundamental and applied biological sciences. Psychology ; Gels ; GLYCINE HISPIDA ; GLYCINE MAX ; GROWTH ; GROWTH RATE ; INDICE DE CRECIMIENTO ; INHIBITION ; LEGUMINOSAE ; MAGNOLIOPHYTA ; MAGNOLIOPSIDA ; MOISTURE CONTENT ; MOLECULAR WEIGHT ; ORGANIC COMPOUNDS ; PARED CELULAR ; PAROI CELLULAIRE ; PESO MOLECULAR ; PLANT GROWTH ; Plant physiology and development ; PLANT STEMS ; PLANT TISSUES ; PLANTS ; POIDS MOLECULAIRE ; POTENTIEL HYDRIQUE ; PROTEINAS ; PROTEINE ; PROTEINS ; SEEDLINGS ; Soybeans ; STEM ELONGATION ; TAUX DE CROISSANCE ; TENEUR EN EAU ; TENSION DE ABSORCION ; Tissue transplantation ; TISSUES ; Vermiculite ; WATER POTENTIAL</subject><ispartof>Plant physiology (Bethesda), 1987-09, Vol.85 (1), p.261-267</ispartof><rights>Copyright 1987 American Society of Plant Physiologists</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-50787a69fcc8be90a5f22a5ffee49886978005056e5513524afebf29a02e0e7f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4270894$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4270894$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7697716$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16665667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5681192$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bozarth, C.S</creatorcontrib><creatorcontrib>Mullet, J.E</creatorcontrib><creatorcontrib>Boyer, J.S</creatorcontrib><title>Cell wall proteins at low water potentials</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>We investigated the proteins extractable from cell walls of stem tissues when plants were subjected to low water potentials (low $\psi _{w}$). Dark-grown soybean seedlings (Glycine max [L.] Merr.) showed decreased stem growth when the roots were exposed to vermiculite having low water content ($\psi _{w}$ = -3 bar). After a time, growth resumed but at a reduced rate relative to the controls. The extractable protein increased in the cell walls as $\psi _{w}$ decreased, especially a 28-kilodalton protein in the young tissue. In contrast, a 70 kilodalton protein, mainly extractable from mature cell walls, appeared to decrease slightly at low $\psi _{w}$. No hydroxyproline was present in either protein, which shows that neither protein is related to extensin. The level of the 28 kilodalton protein increased in the cell wall of the dividing region soon after the initial growth inhibition, and it appeared in the elongating tissue at about the time growth resumed. The correlation between growth and these protein changes suggests that the two events could be related.</description><subject>551000 - Physiological Systems</subject><subject>ALARGAMIENTO DEL TALLO</subject><subject>ALLONGEMENT DE LA TIGE</subject><subject>Amino acids</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological and medical sciences</subject><subject>BIOLOGICAL EFFECTS</subject><subject>BODY</subject><subject>Cell biochemistry</subject><subject>CELL CONSTITUENTS</subject><subject>Cell growth</subject><subject>Cell physiology</subject><subject>CELL WALL</subject><subject>CELL WALLS</subject><subject>CONTENIDO DE HUMEDAD</subject><subject>CORRELATIONS</subject><subject>Development and Growth Regulation</subject><subject>DROUGHTS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gels</subject><subject>GLYCINE HISPIDA</subject><subject>GLYCINE MAX</subject><subject>GROWTH</subject><subject>GROWTH RATE</subject><subject>INDICE DE CRECIMIENTO</subject><subject>INHIBITION</subject><subject>LEGUMINOSAE</subject><subject>MAGNOLIOPHYTA</subject><subject>MAGNOLIOPSIDA</subject><subject>MOISTURE CONTENT</subject><subject>MOLECULAR WEIGHT</subject><subject>ORGANIC COMPOUNDS</subject><subject>PARED CELULAR</subject><subject>PAROI CELLULAIRE</subject><subject>PESO MOLECULAR</subject><subject>PLANT GROWTH</subject><subject>Plant physiology and development</subject><subject>PLANT STEMS</subject><subject>PLANT TISSUES</subject><subject>PLANTS</subject><subject>POIDS MOLECULAIRE</subject><subject>POTENTIEL HYDRIQUE</subject><subject>PROTEINAS</subject><subject>PROTEINE</subject><subject>PROTEINS</subject><subject>SEEDLINGS</subject><subject>Soybeans</subject><subject>STEM ELONGATION</subject><subject>TAUX DE CROISSANCE</subject><subject>TENEUR EN EAU</subject><subject>TENSION DE ABSORCION</subject><subject>Tissue transplantation</subject><subject>TISSUES</subject><subject>Vermiculite</subject><subject>WATER POTENTIAL</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNpVkV2LVDEMhoso7rh65a3IIIKgzJj067Q3ggx-wYIXutelU9vdLmdOj23HxX9vZIZZvUlC8vAmvGHsKcIaEeTbeV4btcY113iPLVAJvuJKmvtsAUA1GGPP2KPWbgAABcqH7Ay11krrYcFeb-I4Lm89hbmWHvPUlr4vx3JLzR7rcqbm1LMf22P2IFGKT475nF1-_PB983l18fXTl837i1WQUvSVgsEMXtsUgtlGC14lzimkGKU1RtvBAChQOiqFQnHpU9wmbj3wCHFI4py9O-jO--0u_gi0vvrRzTXvfP3tis_u_8mUr91V-eUQlOTCkMCLg0BpPbsWco_hOpRpiqE7pQ2i5QS9Om6p5ec-tu52uQUyw0-x7JsbhJBWcIFEvjmQoZbWakynUxDc3w-4eXZGOXT0AaKf_3v9HXu0nICXR8C34MdU_RRyO3EDGTSgJuzZAbtpvdTTWPIBjJV34-SL81eVFC6_GYPWKHq4-AMS5p8k</recordid><startdate>19870901</startdate><enddate>19870901</enddate><creator>Bozarth, C.S</creator><creator>Mullet, J.E</creator><creator>Boyer, J.S</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19870901</creationdate><title>Cell wall proteins at low water potentials</title><author>Bozarth, C.S ; Mullet, J.E ; Boyer, J.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-50787a69fcc8be90a5f22a5ffee49886978005056e5513524afebf29a02e0e7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>551000 - Physiological Systems</topic><topic>ALARGAMIENTO DEL TALLO</topic><topic>ALLONGEMENT DE LA TIGE</topic><topic>Amino acids</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological and medical sciences</topic><topic>BIOLOGICAL EFFECTS</topic><topic>BODY</topic><topic>Cell biochemistry</topic><topic>CELL CONSTITUENTS</topic><topic>Cell growth</topic><topic>Cell physiology</topic><topic>CELL WALL</topic><topic>CELL WALLS</topic><topic>CONTENIDO DE HUMEDAD</topic><topic>CORRELATIONS</topic><topic>Development and Growth Regulation</topic><topic>DROUGHTS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gels</topic><topic>GLYCINE HISPIDA</topic><topic>GLYCINE MAX</topic><topic>GROWTH</topic><topic>GROWTH RATE</topic><topic>INDICE DE CRECIMIENTO</topic><topic>INHIBITION</topic><topic>LEGUMINOSAE</topic><topic>MAGNOLIOPHYTA</topic><topic>MAGNOLIOPSIDA</topic><topic>MOISTURE CONTENT</topic><topic>MOLECULAR WEIGHT</topic><topic>ORGANIC COMPOUNDS</topic><topic>PARED CELULAR</topic><topic>PAROI CELLULAIRE</topic><topic>PESO MOLECULAR</topic><topic>PLANT GROWTH</topic><topic>Plant physiology and development</topic><topic>PLANT STEMS</topic><topic>PLANT TISSUES</topic><topic>PLANTS</topic><topic>POIDS MOLECULAIRE</topic><topic>POTENTIEL HYDRIQUE</topic><topic>PROTEINAS</topic><topic>PROTEINE</topic><topic>PROTEINS</topic><topic>SEEDLINGS</topic><topic>Soybeans</topic><topic>STEM ELONGATION</topic><topic>TAUX DE CROISSANCE</topic><topic>TENEUR EN EAU</topic><topic>TENSION DE ABSORCION</topic><topic>Tissue transplantation</topic><topic>TISSUES</topic><topic>Vermiculite</topic><topic>WATER POTENTIAL</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bozarth, C.S</creatorcontrib><creatorcontrib>Mullet, J.E</creatorcontrib><creatorcontrib>Boyer, J.S</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozarth, C.S</au><au>Mullet, J.E</au><au>Boyer, J.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell wall proteins at low water potentials</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>1987-09-01</date><risdate>1987</risdate><volume>85</volume><issue>1</issue><spage>261</spage><epage>267</epage><pages>261-267</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>We investigated the proteins extractable from cell walls of stem tissues when plants were subjected to low water potentials (low $\psi _{w}$). Dark-grown soybean seedlings (Glycine max [L.] Merr.) showed decreased stem growth when the roots were exposed to vermiculite having low water content ($\psi _{w}$ = -3 bar). After a time, growth resumed but at a reduced rate relative to the controls. The extractable protein increased in the cell walls as $\psi _{w}$ decreased, especially a 28-kilodalton protein in the young tissue. In contrast, a 70 kilodalton protein, mainly extractable from mature cell walls, appeared to decrease slightly at low $\psi _{w}$. No hydroxyproline was present in either protein, which shows that neither protein is related to extensin. The level of the 28 kilodalton protein increased in the cell wall of the dividing region soon after the initial growth inhibition, and it appeared in the elongating tissue at about the time growth resumed. The correlation between growth and these protein changes suggests that the two events could be related.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>16665667</pmid><doi>10.1104/pp.85.1.261</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 1987-09, Vol.85 (1), p.261-267
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1054238
source JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects 551000 - Physiological Systems
ALARGAMIENTO DEL TALLO
ALLONGEMENT DE LA TIGE
Amino acids
BASIC BIOLOGICAL SCIENCES
Biological and medical sciences
BIOLOGICAL EFFECTS
BODY
Cell biochemistry
CELL CONSTITUENTS
Cell growth
Cell physiology
CELL WALL
CELL WALLS
CONTENIDO DE HUMEDAD
CORRELATIONS
Development and Growth Regulation
DROUGHTS
Fundamental and applied biological sciences. Psychology
Gels
GLYCINE HISPIDA
GLYCINE MAX
GROWTH
GROWTH RATE
INDICE DE CRECIMIENTO
INHIBITION
LEGUMINOSAE
MAGNOLIOPHYTA
MAGNOLIOPSIDA
MOISTURE CONTENT
MOLECULAR WEIGHT
ORGANIC COMPOUNDS
PARED CELULAR
PAROI CELLULAIRE
PESO MOLECULAR
PLANT GROWTH
Plant physiology and development
PLANT STEMS
PLANT TISSUES
PLANTS
POIDS MOLECULAIRE
POTENTIEL HYDRIQUE
PROTEINAS
PROTEINE
PROTEINS
SEEDLINGS
Soybeans
STEM ELONGATION
TAUX DE CROISSANCE
TENEUR EN EAU
TENSION DE ABSORCION
Tissue transplantation
TISSUES
Vermiculite
WATER POTENTIAL
title Cell wall proteins at low water potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20wall%20proteins%20at%20low%20water%20potentials&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Bozarth,%20C.S&rft.date=1987-09-01&rft.volume=85&rft.issue=1&rft.spage=261&rft.epage=267&rft.pages=261-267&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.85.1.261&rft_dat=%3Cjstor_pubme%3E4270894%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733493231&rft_id=info:pmid/16665667&rft_jstor_id=4270894&rfr_iscdi=true