TiO2 Nanotubes Decorated with Mo2C for Enhanced Photoelectrochemical Water-Splitting Properties

The presence of Ti3+ in the structure of TiO2 nanotube arrays (NTs) has been shown to enhance the photoelectrochemical (PEC) water-splitting performance of these NTs, leading to improved results compared to pristine anatase TiO2 NTs. To further improve the properties related to PEC performance, we s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-09, Vol.16 (18), p.6261
Hauptverfasser: Moridon, Siti Nurul Falaein, Arifin, Khuzaimah, Mohamed, Mohamad Azuwa, Minggu, Lorna Jeffery, Mohamad Yunus, Rozan, Kassim, Mohammad B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 6261
container_title Materials
container_volume 16
creator Moridon, Siti Nurul Falaein
Arifin, Khuzaimah
Mohamed, Mohamad Azuwa
Minggu, Lorna Jeffery
Mohamad Yunus, Rozan
Kassim, Mohammad B.
description The presence of Ti3+ in the structure of TiO2 nanotube arrays (NTs) has been shown to enhance the photoelectrochemical (PEC) water-splitting performance of these NTs, leading to improved results compared to pristine anatase TiO2 NTs. To further improve the properties related to PEC performance, we successfully produced TiO2 NTs using a two-step electrochemical anodization technique, followed by annealing at a temperature of 450 °C. Subsequently, Mo2C was decorated onto the NTs by dip coating them with precursors at varying concentrations and times. The presence of anatase TiO2 and Ti3O5 phases within the TiO2 NTs was confirmed through X-ray diffraction (XRD) analysis. The TiO2 NTs that were decorated with Mo2C demonstrated a photocurrent density of approximately 1.4 mA cm−2, a value that is approximately five times greater than the photocurrent density exhibited by the bare TiO2 NTs, which was approximately 0.21 mA cm−2. The observed increase in photocurrent density can be ascribed to the incorporation of Mo2C as a cocatalyst, which significantly enhances the photocatalytic characteristics of the TiO2 NTs. The successful deposition of Mo2C onto the TiO2 NTs was further corroborated by the characterization techniques utilized. The utilization of field emission scanning electron microscopy (FESEM) allowed for the observation of Mo2C particles on the surface of TiO2 NTs. To validate the composition and optical characteristics of the decorated NTs, X-ray photoelectron spectroscopy (XPS) and UV absorbance analysis were performed. This study introduces a potentially effective method for developing efficient photoelectrodes based on TiO2 for environmentally sustainable hydrogen production through the use of photoelectrochemical water-splitting devices. The utilization of Mo2C as a cocatalyst on TiO2 NTs presents opportunities for the advancement of effective and environmentally friendly photoelectrochemical (PEC) systems.
doi_str_mv 10.3390/ma16186261
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10532882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870144824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-9a4334bfc1fffaa2e3a71df613609aa808328e8915fe117caeb2513d8fcb4e013</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhk1poWGzl_wCQy-l4EYjab3yqYRt2gbyBd2QoxhrR7GCbW0lOSH_Pgob0iRzmWHmmZf5KIoDYN-FaNjhgFCDqnkNH4o9aJq6gkbKj6_iz8U8xluWTQhQvNkr9Npd8PIcR5-mlmL5k4wPmGhT3rvUlWeer0rrQ3k8djianL7sfPLUk0nBm44GZ7Avr3NHqP5ue5eSG2_Ky-C3FJKjuF98sthHmj_7WXH163i9-lOdXvw-WR2dVkYomaoGpRCytQastYicBC5hY2sQNWsQFVOCK1INLCwBLA1SyxcgNsqaVhIDMSt-7HS3UzvQxtCYAvZ6G9yA4UF7dPptZXSdvvF3GtgiSyueFb4-KwT_b6KY9OCiob7HkfwUNVdLBlIqLjP65R1666cw5v0yVec7L2pYZurbjjLBxxjIvkwDTD89TP9_mHgEj5SJcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869445617</pqid></control><display><type>article</type><title>TiO2 Nanotubes Decorated with Mo2C for Enhanced Photoelectrochemical Water-Splitting Properties</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Moridon, Siti Nurul Falaein ; Arifin, Khuzaimah ; Mohamed, Mohamad Azuwa ; Minggu, Lorna Jeffery ; Mohamad Yunus, Rozan ; Kassim, Mohammad B.</creator><creatorcontrib>Moridon, Siti Nurul Falaein ; Arifin, Khuzaimah ; Mohamed, Mohamad Azuwa ; Minggu, Lorna Jeffery ; Mohamad Yunus, Rozan ; Kassim, Mohammad B.</creatorcontrib><description>The presence of Ti3+ in the structure of TiO2 nanotube arrays (NTs) has been shown to enhance the photoelectrochemical (PEC) water-splitting performance of these NTs, leading to improved results compared to pristine anatase TiO2 NTs. To further improve the properties related to PEC performance, we successfully produced TiO2 NTs using a two-step electrochemical anodization technique, followed by annealing at a temperature of 450 °C. Subsequently, Mo2C was decorated onto the NTs by dip coating them with precursors at varying concentrations and times. The presence of anatase TiO2 and Ti3O5 phases within the TiO2 NTs was confirmed through X-ray diffraction (XRD) analysis. The TiO2 NTs that were decorated with Mo2C demonstrated a photocurrent density of approximately 1.4 mA cm−2, a value that is approximately five times greater than the photocurrent density exhibited by the bare TiO2 NTs, which was approximately 0.21 mA cm−2. The observed increase in photocurrent density can be ascribed to the incorporation of Mo2C as a cocatalyst, which significantly enhances the photocatalytic characteristics of the TiO2 NTs. The successful deposition of Mo2C onto the TiO2 NTs was further corroborated by the characterization techniques utilized. The utilization of field emission scanning electron microscopy (FESEM) allowed for the observation of Mo2C particles on the surface of TiO2 NTs. To validate the composition and optical characteristics of the decorated NTs, X-ray photoelectron spectroscopy (XPS) and UV absorbance analysis were performed. This study introduces a potentially effective method for developing efficient photoelectrodes based on TiO2 for environmentally sustainable hydrogen production through the use of photoelectrochemical water-splitting devices. The utilization of Mo2C as a cocatalyst on TiO2 NTs presents opportunities for the advancement of effective and environmentally friendly photoelectrochemical (PEC) systems.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16186261</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Anatase ; Decoration ; Density ; Electrodes ; Electrolytes ; Ethanol ; Field emission microscopy ; Fossil fuels ; Hydrogen production ; Immersion coating ; Morphology ; Nanotubes ; Optical properties ; Photocatalysis ; Photoelectric effect ; Photoelectric emission ; Photoelectrons ; Spectrum analysis ; System effectiveness ; Titanium dioxide ; Titanium oxides ; Water splitting ; X ray photoelectron spectroscopy</subject><ispartof>Materials, 2023-09, Vol.16 (18), p.6261</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-9a4334bfc1fffaa2e3a71df613609aa808328e8915fe117caeb2513d8fcb4e013</citedby><cites>FETCH-LOGICAL-c384t-9a4334bfc1fffaa2e3a71df613609aa808328e8915fe117caeb2513d8fcb4e013</cites><orcidid>0000-0003-0976-1650 ; 0009-0001-7966-7005 ; 0000-0002-7202-6029 ; 0000-0001-7959-8612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532882/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532882/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Moridon, Siti Nurul Falaein</creatorcontrib><creatorcontrib>Arifin, Khuzaimah</creatorcontrib><creatorcontrib>Mohamed, Mohamad Azuwa</creatorcontrib><creatorcontrib>Minggu, Lorna Jeffery</creatorcontrib><creatorcontrib>Mohamad Yunus, Rozan</creatorcontrib><creatorcontrib>Kassim, Mohammad B.</creatorcontrib><title>TiO2 Nanotubes Decorated with Mo2C for Enhanced Photoelectrochemical Water-Splitting Properties</title><title>Materials</title><description>The presence of Ti3+ in the structure of TiO2 nanotube arrays (NTs) has been shown to enhance the photoelectrochemical (PEC) water-splitting performance of these NTs, leading to improved results compared to pristine anatase TiO2 NTs. To further improve the properties related to PEC performance, we successfully produced TiO2 NTs using a two-step electrochemical anodization technique, followed by annealing at a temperature of 450 °C. Subsequently, Mo2C was decorated onto the NTs by dip coating them with precursors at varying concentrations and times. The presence of anatase TiO2 and Ti3O5 phases within the TiO2 NTs was confirmed through X-ray diffraction (XRD) analysis. The TiO2 NTs that were decorated with Mo2C demonstrated a photocurrent density of approximately 1.4 mA cm−2, a value that is approximately five times greater than the photocurrent density exhibited by the bare TiO2 NTs, which was approximately 0.21 mA cm−2. The observed increase in photocurrent density can be ascribed to the incorporation of Mo2C as a cocatalyst, which significantly enhances the photocatalytic characteristics of the TiO2 NTs. The successful deposition of Mo2C onto the TiO2 NTs was further corroborated by the characterization techniques utilized. The utilization of field emission scanning electron microscopy (FESEM) allowed for the observation of Mo2C particles on the surface of TiO2 NTs. To validate the composition and optical characteristics of the decorated NTs, X-ray photoelectron spectroscopy (XPS) and UV absorbance analysis were performed. This study introduces a potentially effective method for developing efficient photoelectrodes based on TiO2 for environmentally sustainable hydrogen production through the use of photoelectrochemical water-splitting devices. The utilization of Mo2C as a cocatalyst on TiO2 NTs presents opportunities for the advancement of effective and environmentally friendly photoelectrochemical (PEC) systems.</description><subject>Alternative energy sources</subject><subject>Anatase</subject><subject>Decoration</subject><subject>Density</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Ethanol</subject><subject>Field emission microscopy</subject><subject>Fossil fuels</subject><subject>Hydrogen production</subject><subject>Immersion coating</subject><subject>Morphology</subject><subject>Nanotubes</subject><subject>Optical properties</subject><subject>Photocatalysis</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoelectrons</subject><subject>Spectrum analysis</subject><subject>System effectiveness</subject><subject>Titanium dioxide</subject><subject>Titanium oxides</subject><subject>Water splitting</subject><subject>X ray photoelectron spectroscopy</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1r3DAQhk1poWGzl_wCQy-l4EYjab3yqYRt2gbyBd2QoxhrR7GCbW0lOSH_Pgob0iRzmWHmmZf5KIoDYN-FaNjhgFCDqnkNH4o9aJq6gkbKj6_iz8U8xluWTQhQvNkr9Npd8PIcR5-mlmL5k4wPmGhT3rvUlWeer0rrQ3k8djianL7sfPLUk0nBm44GZ7Avr3NHqP5ue5eSG2_Ky-C3FJKjuF98sthHmj_7WXH163i9-lOdXvw-WR2dVkYomaoGpRCytQastYicBC5hY2sQNWsQFVOCK1INLCwBLA1SyxcgNsqaVhIDMSt-7HS3UzvQxtCYAvZ6G9yA4UF7dPptZXSdvvF3GtgiSyueFb4-KwT_b6KY9OCiob7HkfwUNVdLBlIqLjP65R1666cw5v0yVec7L2pYZurbjjLBxxjIvkwDTD89TP9_mHgEj5SJcA</recordid><startdate>20230918</startdate><enddate>20230918</enddate><creator>Moridon, Siti Nurul Falaein</creator><creator>Arifin, Khuzaimah</creator><creator>Mohamed, Mohamad Azuwa</creator><creator>Minggu, Lorna Jeffery</creator><creator>Mohamad Yunus, Rozan</creator><creator>Kassim, Mohammad B.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0976-1650</orcidid><orcidid>https://orcid.org/0009-0001-7966-7005</orcidid><orcidid>https://orcid.org/0000-0002-7202-6029</orcidid><orcidid>https://orcid.org/0000-0001-7959-8612</orcidid></search><sort><creationdate>20230918</creationdate><title>TiO2 Nanotubes Decorated with Mo2C for Enhanced Photoelectrochemical Water-Splitting Properties</title><author>Moridon, Siti Nurul Falaein ; Arifin, Khuzaimah ; Mohamed, Mohamad Azuwa ; Minggu, Lorna Jeffery ; Mohamad Yunus, Rozan ; Kassim, Mohammad B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-9a4334bfc1fffaa2e3a71df613609aa808328e8915fe117caeb2513d8fcb4e013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy sources</topic><topic>Anatase</topic><topic>Decoration</topic><topic>Density</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Ethanol</topic><topic>Field emission microscopy</topic><topic>Fossil fuels</topic><topic>Hydrogen production</topic><topic>Immersion coating</topic><topic>Morphology</topic><topic>Nanotubes</topic><topic>Optical properties</topic><topic>Photocatalysis</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoelectrons</topic><topic>Spectrum analysis</topic><topic>System effectiveness</topic><topic>Titanium dioxide</topic><topic>Titanium oxides</topic><topic>Water splitting</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moridon, Siti Nurul Falaein</creatorcontrib><creatorcontrib>Arifin, Khuzaimah</creatorcontrib><creatorcontrib>Mohamed, Mohamad Azuwa</creatorcontrib><creatorcontrib>Minggu, Lorna Jeffery</creatorcontrib><creatorcontrib>Mohamad Yunus, Rozan</creatorcontrib><creatorcontrib>Kassim, Mohammad B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moridon, Siti Nurul Falaein</au><au>Arifin, Khuzaimah</au><au>Mohamed, Mohamad Azuwa</au><au>Minggu, Lorna Jeffery</au><au>Mohamad Yunus, Rozan</au><au>Kassim, Mohammad B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TiO2 Nanotubes Decorated with Mo2C for Enhanced Photoelectrochemical Water-Splitting Properties</atitle><jtitle>Materials</jtitle><date>2023-09-18</date><risdate>2023</risdate><volume>16</volume><issue>18</issue><spage>6261</spage><pages>6261-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The presence of Ti3+ in the structure of TiO2 nanotube arrays (NTs) has been shown to enhance the photoelectrochemical (PEC) water-splitting performance of these NTs, leading to improved results compared to pristine anatase TiO2 NTs. To further improve the properties related to PEC performance, we successfully produced TiO2 NTs using a two-step electrochemical anodization technique, followed by annealing at a temperature of 450 °C. Subsequently, Mo2C was decorated onto the NTs by dip coating them with precursors at varying concentrations and times. The presence of anatase TiO2 and Ti3O5 phases within the TiO2 NTs was confirmed through X-ray diffraction (XRD) analysis. The TiO2 NTs that were decorated with Mo2C demonstrated a photocurrent density of approximately 1.4 mA cm−2, a value that is approximately five times greater than the photocurrent density exhibited by the bare TiO2 NTs, which was approximately 0.21 mA cm−2. The observed increase in photocurrent density can be ascribed to the incorporation of Mo2C as a cocatalyst, which significantly enhances the photocatalytic characteristics of the TiO2 NTs. The successful deposition of Mo2C onto the TiO2 NTs was further corroborated by the characterization techniques utilized. The utilization of field emission scanning electron microscopy (FESEM) allowed for the observation of Mo2C particles on the surface of TiO2 NTs. To validate the composition and optical characteristics of the decorated NTs, X-ray photoelectron spectroscopy (XPS) and UV absorbance analysis were performed. This study introduces a potentially effective method for developing efficient photoelectrodes based on TiO2 for environmentally sustainable hydrogen production through the use of photoelectrochemical water-splitting devices. The utilization of Mo2C as a cocatalyst on TiO2 NTs presents opportunities for the advancement of effective and environmentally friendly photoelectrochemical (PEC) systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma16186261</doi><orcidid>https://orcid.org/0000-0003-0976-1650</orcidid><orcidid>https://orcid.org/0009-0001-7966-7005</orcidid><orcidid>https://orcid.org/0000-0002-7202-6029</orcidid><orcidid>https://orcid.org/0000-0001-7959-8612</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-09, Vol.16 (18), p.6261
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10532882
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alternative energy sources
Anatase
Decoration
Density
Electrodes
Electrolytes
Ethanol
Field emission microscopy
Fossil fuels
Hydrogen production
Immersion coating
Morphology
Nanotubes
Optical properties
Photocatalysis
Photoelectric effect
Photoelectric emission
Photoelectrons
Spectrum analysis
System effectiveness
Titanium dioxide
Titanium oxides
Water splitting
X ray photoelectron spectroscopy
title TiO2 Nanotubes Decorated with Mo2C for Enhanced Photoelectrochemical Water-Splitting Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TiO2%20Nanotubes%20Decorated%20with%20Mo2C%20for%20Enhanced%20Photoelectrochemical%20Water-Splitting%20Properties&rft.jtitle=Materials&rft.au=Moridon,%20Siti%20Nurul%20Falaein&rft.date=2023-09-18&rft.volume=16&rft.issue=18&rft.spage=6261&rft.pages=6261-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16186261&rft_dat=%3Cproquest_pubme%3E2870144824%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869445617&rft_id=info:pmid/&rfr_iscdi=true