An electrophilic fragment screening for the development of small molecules targeting caspase-2
Recent Alzheimer's research has shown increasing interest in the caspase-2 (Casp2) enzyme. However, the available Casp2 inhibitors, which have been pentapeptides or peptidomimetics, face challenges for use as CNS drugs. In this study, we successfully screened a 1920-compound chloroacetamide-bas...
Gespeichert in:
Veröffentlicht in: | European journal of medicinal chemistry 2023-11, Vol.259, p.115632-115632, Article 115632 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent Alzheimer's research has shown increasing interest in the caspase-2 (Casp2) enzyme. However, the available Casp2 inhibitors, which have been pentapeptides or peptidomimetics, face challenges for use as CNS drugs. In this study, we successfully screened a 1920-compound chloroacetamide-based, electrophilic fragment library from Enamine. Our two-point dose screen identified 64 Casp2 hits, which were further evaluated in a ten-point dose-response study to assess selectivity over Casp3. We discovered compounds with inhibition values in the single-digit micromolar and sub-micromolar range, as well as up to 32-fold selectivity for Casp2 over Casp3. Target engagement analysis confirmed the covalent-irreversible binding of the selected fragments to Cys320 at the active site of Casp2. Overall, our findings lay a strong foundation for the future development of small-molecule Casp2 inhibitors.
[Display omitted]
•Electrophilic fragment screening for caspase-2 (Casp2) identified 64 hit compounds.•Single-digit micromolar affinity for Casp2 and up to 32-fold selectivity over Casp3.•Successful hit validation for selected fragments.•Target engagement study using mass spectrometry peptide sequencing (MSPS).•Covalent-irreversible fragment binding to cysteine-320 at the active site of Casp2. |
---|---|
ISSN: | 0223-5234 1768-3254 1768-3254 |
DOI: | 10.1016/j.ejmech.2023.115632 |