Simultaneous modeling of multivariate heterogeneous responses and heteroskedasticity via a two‐stage composite likelihood
Multivariate heterogeneous responses and heteroskedasticity have attracted increasing attention in recent years. In genome‐wide association studies, effective simultaneous modeling of multiple phenotypes would improve statistical power and interpretability. However, a flexible common modeling system...
Gespeichert in:
Veröffentlicht in: | Biometrical journal 2023-08, Vol.65 (6), p.e2200029-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | e2200029 |
container_title | Biometrical journal |
container_volume | 65 |
creator | Ting, Bryan W. Wright, Fred A. Zhou, Yi‐Hui |
description | Multivariate heterogeneous responses and heteroskedasticity have attracted increasing attention in recent years. In genome‐wide association studies, effective simultaneous modeling of multiple phenotypes would improve statistical power and interpretability. However, a flexible common modeling system for heterogeneous data types can pose computational difficulties. Here we build upon a previous method for multivariate probit estimation using a two‐stage composite likelihood that exhibits favorable computational time while retaining attractive parameter estimation properties. We extend this approach to incorporate multivariate responses of heterogeneous data types (binary and continuous), and possible heteroskedasticity. Although the approach has wide applications, it would be particularly useful for genomics, precision medicine, or individual biomedical prediction. Using a genomics example, we explore statistical power and confirm that the approach performs well for hypothesis testing and coverage percentages under a wide variety of settings. The approach has the potential to better leverage genomics data and provide interpretable inference for pleiotropy, in which a locus is associated with multiple traits. |
doi_str_mv | 10.1002/bimj.202200029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10524370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844920128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4190-4f721b5a46f63b59f3c4fe5d1c3e60ac5977ea006b8e0360dfe9c569ed999d673</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhS1ERdPCliWyxIbNpP6bmXiFoKLQqogFsLY89p3E6cw42J5UERsegWfkSXA0aQRs8May7-fje-5B6Dklc0oIu2hcv54zwhjJJ_kIzWjJaCEIrx6jGeGMF3wh6lN0FuM6I5II9gSd8ppRJlg9Q98_u37skh7AjxH33kLnhiX2Ld5fu60OTifAK0gQ_BImLEDc-CFCxHqwh1q8A6tjcsalHd46jTVO9_7Xj58x6SVg4_uNjy5Lde4u_7Hy3j5FJ63uIjw77Ofo69W7L5cfittP768v39wWRlBJCtHmbptSi6qteFPKlhvRQmmp4VARbUpZ16AJqZoFZN_EtiBNWUmwUkpb1fwcvZ50N2PTgzUwpKA7tQmu12GnvHbq78rgVmrpt4qSkglek6zw6qAQ_LcRYlK9iwa6bpqbYgta50UEz-jLf9C1H8OQ_WVKCMkIZYtMzSfK5MnFAO2xG0rUPli1D1Ydg80PXvzp4Yg_JJkBMQH3roPdf-TU2-uPN0xkZ78BuI6zzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844920128</pqid></control><display><type>article</type><title>Simultaneous modeling of multivariate heterogeneous responses and heteroskedasticity via a two‐stage composite likelihood</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Ting, Bryan W. ; Wright, Fred A. ; Zhou, Yi‐Hui</creator><creatorcontrib>Ting, Bryan W. ; Wright, Fred A. ; Zhou, Yi‐Hui</creatorcontrib><description>Multivariate heterogeneous responses and heteroskedasticity have attracted increasing attention in recent years. In genome‐wide association studies, effective simultaneous modeling of multiple phenotypes would improve statistical power and interpretability. However, a flexible common modeling system for heterogeneous data types can pose computational difficulties. Here we build upon a previous method for multivariate probit estimation using a two‐stage composite likelihood that exhibits favorable computational time while retaining attractive parameter estimation properties. We extend this approach to incorporate multivariate responses of heterogeneous data types (binary and continuous), and possible heteroskedasticity. Although the approach has wide applications, it would be particularly useful for genomics, precision medicine, or individual biomedical prediction. Using a genomics example, we explore statistical power and confirm that the approach performs well for hypothesis testing and coverage percentages under a wide variety of settings. The approach has the potential to better leverage genomics data and provide interpretable inference for pleiotropy, in which a locus is associated with multiple traits.</description><identifier>ISSN: 0323-3847</identifier><identifier>ISSN: 1521-4036</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202200029</identifier><identifier>PMID: 37212427</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH & Co. KGaA</publisher><subject>Computer applications ; Computing time ; Genome-wide association studies ; Genome-Wide Association Study - methods ; Genomics ; Genomics - methods ; heterogeneity ; heteroskedasticity ; Hypothesis testing ; Modelling ; Multivariate analysis ; multivariate statistics ; Parameter estimation ; Phenotype ; Phenotypes ; Pleiotropy ; Precision medicine ; prediction ; Probability ; Sensitivity analysis ; Statistical power ; Statistics</subject><ispartof>Biometrical journal, 2023-08, Vol.65 (6), p.e2200029-n/a</ispartof><rights>2023 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2023 The Authors. Biometrical Journal published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4190-4f721b5a46f63b59f3c4fe5d1c3e60ac5977ea006b8e0360dfe9c569ed999d673</cites><orcidid>0000-0002-4092-7463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202200029$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202200029$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37212427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ting, Bryan W.</creatorcontrib><creatorcontrib>Wright, Fred A.</creatorcontrib><creatorcontrib>Zhou, Yi‐Hui</creatorcontrib><title>Simultaneous modeling of multivariate heterogeneous responses and heteroskedasticity via a two‐stage composite likelihood</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>Multivariate heterogeneous responses and heteroskedasticity have attracted increasing attention in recent years. In genome‐wide association studies, effective simultaneous modeling of multiple phenotypes would improve statistical power and interpretability. However, a flexible common modeling system for heterogeneous data types can pose computational difficulties. Here we build upon a previous method for multivariate probit estimation using a two‐stage composite likelihood that exhibits favorable computational time while retaining attractive parameter estimation properties. We extend this approach to incorporate multivariate responses of heterogeneous data types (binary and continuous), and possible heteroskedasticity. Although the approach has wide applications, it would be particularly useful for genomics, precision medicine, or individual biomedical prediction. Using a genomics example, we explore statistical power and confirm that the approach performs well for hypothesis testing and coverage percentages under a wide variety of settings. The approach has the potential to better leverage genomics data and provide interpretable inference for pleiotropy, in which a locus is associated with multiple traits.</description><subject>Computer applications</subject><subject>Computing time</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>heterogeneity</subject><subject>heteroskedasticity</subject><subject>Hypothesis testing</subject><subject>Modelling</subject><subject>Multivariate analysis</subject><subject>multivariate statistics</subject><subject>Parameter estimation</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Pleiotropy</subject><subject>Precision medicine</subject><subject>prediction</subject><subject>Probability</subject><subject>Sensitivity analysis</subject><subject>Statistical power</subject><subject>Statistics</subject><issn>0323-3847</issn><issn>1521-4036</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1uEzEUhS1ERdPCliWyxIbNpP6bmXiFoKLQqogFsLY89p3E6cw42J5UERsegWfkSXA0aQRs8May7-fje-5B6Dklc0oIu2hcv54zwhjJJ_kIzWjJaCEIrx6jGeGMF3wh6lN0FuM6I5II9gSd8ppRJlg9Q98_u37skh7AjxH33kLnhiX2Ld5fu60OTifAK0gQ_BImLEDc-CFCxHqwh1q8A6tjcsalHd46jTVO9_7Xj58x6SVg4_uNjy5Lde4u_7Hy3j5FJ63uIjw77Ofo69W7L5cfittP768v39wWRlBJCtHmbptSi6qteFPKlhvRQmmp4VARbUpZ16AJqZoFZN_EtiBNWUmwUkpb1fwcvZ50N2PTgzUwpKA7tQmu12GnvHbq78rgVmrpt4qSkglek6zw6qAQ_LcRYlK9iwa6bpqbYgta50UEz-jLf9C1H8OQ_WVKCMkIZYtMzSfK5MnFAO2xG0rUPli1D1Ydg80PXvzp4Yg_JJkBMQH3roPdf-TU2-uPN0xkZ78BuI6zzQ</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Ting, Bryan W.</creator><creator>Wright, Fred A.</creator><creator>Zhou, Yi‐Hui</creator><general>Wiley - VCH Verlag GmbH & Co. KGaA</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4092-7463</orcidid></search><sort><creationdate>202308</creationdate><title>Simultaneous modeling of multivariate heterogeneous responses and heteroskedasticity via a two‐stage composite likelihood</title><author>Ting, Bryan W. ; Wright, Fred A. ; Zhou, Yi‐Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4190-4f721b5a46f63b59f3c4fe5d1c3e60ac5977ea006b8e0360dfe9c569ed999d673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer applications</topic><topic>Computing time</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>heterogeneity</topic><topic>heteroskedasticity</topic><topic>Hypothesis testing</topic><topic>Modelling</topic><topic>Multivariate analysis</topic><topic>multivariate statistics</topic><topic>Parameter estimation</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Pleiotropy</topic><topic>Precision medicine</topic><topic>prediction</topic><topic>Probability</topic><topic>Sensitivity analysis</topic><topic>Statistical power</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ting, Bryan W.</creatorcontrib><creatorcontrib>Wright, Fred A.</creatorcontrib><creatorcontrib>Zhou, Yi‐Hui</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ting, Bryan W.</au><au>Wright, Fred A.</au><au>Zhou, Yi‐Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous modeling of multivariate heterogeneous responses and heteroskedasticity via a two‐stage composite likelihood</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2023-08</date><risdate>2023</risdate><volume>65</volume><issue>6</issue><spage>e2200029</spage><epage>n/a</epage><pages>e2200029-n/a</pages><issn>0323-3847</issn><issn>1521-4036</issn><eissn>1521-4036</eissn><abstract>Multivariate heterogeneous responses and heteroskedasticity have attracted increasing attention in recent years. In genome‐wide association studies, effective simultaneous modeling of multiple phenotypes would improve statistical power and interpretability. However, a flexible common modeling system for heterogeneous data types can pose computational difficulties. Here we build upon a previous method for multivariate probit estimation using a two‐stage composite likelihood that exhibits favorable computational time while retaining attractive parameter estimation properties. We extend this approach to incorporate multivariate responses of heterogeneous data types (binary and continuous), and possible heteroskedasticity. Although the approach has wide applications, it would be particularly useful for genomics, precision medicine, or individual biomedical prediction. Using a genomics example, we explore statistical power and confirm that the approach performs well for hypothesis testing and coverage percentages under a wide variety of settings. The approach has the potential to better leverage genomics data and provide interpretable inference for pleiotropy, in which a locus is associated with multiple traits.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH & Co. KGaA</pub><pmid>37212427</pmid><doi>10.1002/bimj.202200029</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4092-7463</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0323-3847 |
ispartof | Biometrical journal, 2023-08, Vol.65 (6), p.e2200029-n/a |
issn | 0323-3847 1521-4036 1521-4036 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10524370 |
source | MEDLINE; Wiley Journals |
subjects | Computer applications Computing time Genome-wide association studies Genome-Wide Association Study - methods Genomics Genomics - methods heterogeneity heteroskedasticity Hypothesis testing Modelling Multivariate analysis multivariate statistics Parameter estimation Phenotype Phenotypes Pleiotropy Precision medicine prediction Probability Sensitivity analysis Statistical power Statistics |
title | Simultaneous modeling of multivariate heterogeneous responses and heteroskedasticity via a two‐stage composite likelihood |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20modeling%20of%20multivariate%20heterogeneous%20responses%20and%20heteroskedasticity%20via%20a%20two%E2%80%90stage%20composite%20likelihood&rft.jtitle=Biometrical%20journal&rft.au=Ting,%20Bryan%20W.&rft.date=2023-08&rft.volume=65&rft.issue=6&rft.spage=e2200029&rft.epage=n/a&rft.pages=e2200029-n/a&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202200029&rft_dat=%3Cproquest_pubme%3E2844920128%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844920128&rft_id=info:pmid/37212427&rfr_iscdi=true |