Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution

The genome of SARS-CoV-2 encodes for a helicase (nsp13) that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2023-09, Vol.51 (17), p.9266-9278
Hauptverfasser: Marx, Sinduja K, Mickolajczyk, Keith J, Craig, Jonathan M, Thomas, Christopher A, Pfeffer, Akira M, Abell, Sarah J, Carrasco, Jessica D, Franzi, Michaela C, Huang, Jesse R, Kim, Hwanhee C, Brinkerhoff, Henry, Kapoor, Tarun M, Gundlach, Jens H, Laszlo, Andrew H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9278
container_issue 17
container_start_page 9266
container_title Nucleic acids research
container_volume 51
creator Marx, Sinduja K
Mickolajczyk, Keith J
Craig, Jonathan M
Thomas, Christopher A
Pfeffer, Akira M
Abell, Sarah J
Carrasco, Jessica D
Franzi, Michaela C
Huang, Jesse R
Kim, Hwanhee C
Brinkerhoff, Henry
Kapoor, Tarun M
Gundlach, Jens H
Laszlo, Andrew H
description The genome of SARS-CoV-2 encodes for a helicase (nsp13) that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 turns ATP-hydrolysis into directed motion along nucleic acid strands. We measured nsp13 both as it translocates along single-stranded DNA or unwinds double-stranded DNA. Our data reveal nsp13's single-nucleotide steps, translocating at ∼1000 nt/s or unwinding at ∼100 bp/s. Nanopore tweezers' high spatiotemporal resolution enables detailed kinetic analysis of nsp13 motion. As a proof-of-principle for inhibition studies, we observed nsp13's motion in the presence of the ATPase inhibitor ATPγS. We construct a detailed picture of inhibition in which ATPγS has multiple mechanisms of inhibition. The dominant mechanism of inhibition depends on the application of assisting force. This lays the groundwork for future single-molecule inhibition studies with viral helicases.
doi_str_mv 10.1093/nar/gkad660
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10516658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848842309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-ad870d4ffd5fdf8d029245191d9d33d7950747fd188a6167ab2300bda8708eb33</originalsourceid><addsrcrecordid>eNpVkd1LwzAUxYMobk6ffJc-ChKXr6bpk4zhFwwGTn0NaZOs0a6ZSTvwv7djc-jTfbi_c87lHgAuMbrFKKfjRoXx8lNpztERGGLKCWQ5J8dgiChKIUZMDMBZjB8IYYZTdgoGNEs5yjEfgvm8iCZsXLNMXFO5wrXON4m3SVuZZDF5WcCpf4ckqUztShVNotok9nRtYNOVtfGt0yYJJvq620rPwYlVdTQX-zkCbw_3r9MnOJs_Pk8nM1hSQVqotMiQZtbq1GorNCI5YSnOsc41pTrLU5SxzGoshOKYZ6ogFKFCq14mTEHpCNztfNddsTK6NE0bVC3Xwa1U-JZeOfl_07hKLv1GYpRizlPRO1zvHYL_6kxs5crF0tS1aozvoiSCCcH62LxHb3ZoGXyMwdhDDkZy24HsO5D7Dnr66u9pB_b36fQH9bOERw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848842309</pqid></control><display><type>article</type><title>Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Marx, Sinduja K ; Mickolajczyk, Keith J ; Craig, Jonathan M ; Thomas, Christopher A ; Pfeffer, Akira M ; Abell, Sarah J ; Carrasco, Jessica D ; Franzi, Michaela C ; Huang, Jesse R ; Kim, Hwanhee C ; Brinkerhoff, Henry ; Kapoor, Tarun M ; Gundlach, Jens H ; Laszlo, Andrew H</creator><creatorcontrib>Marx, Sinduja K ; Mickolajczyk, Keith J ; Craig, Jonathan M ; Thomas, Christopher A ; Pfeffer, Akira M ; Abell, Sarah J ; Carrasco, Jessica D ; Franzi, Michaela C ; Huang, Jesse R ; Kim, Hwanhee C ; Brinkerhoff, Henry ; Kapoor, Tarun M ; Gundlach, Jens H ; Laszlo, Andrew H</creatorcontrib><description>The genome of SARS-CoV-2 encodes for a helicase (nsp13) that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 turns ATP-hydrolysis into directed motion along nucleic acid strands. We measured nsp13 both as it translocates along single-stranded DNA or unwinds double-stranded DNA. Our data reveal nsp13's single-nucleotide steps, translocating at ∼1000 nt/s or unwinding at ∼100 bp/s. Nanopore tweezers' high spatiotemporal resolution enables detailed kinetic analysis of nsp13 motion. As a proof-of-principle for inhibition studies, we observed nsp13's motion in the presence of the ATPase inhibitor ATPγS. We construct a detailed picture of inhibition in which ATPγS has multiple mechanisms of inhibition. The dominant mechanism of inhibition depends on the application of assisting force. This lays the groundwork for future single-molecule inhibition studies with viral helicases.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkad660</identifier><identifier>PMID: 37560916</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Nucleic Acid Enzymes</subject><ispartof>Nucleic acids research, 2023-09, Vol.51 (17), p.9266-9278</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-ad870d4ffd5fdf8d029245191d9d33d7950747fd188a6167ab2300bda8708eb33</citedby><cites>FETCH-LOGICAL-c382t-ad870d4ffd5fdf8d029245191d9d33d7950747fd188a6167ab2300bda8708eb33</cites><orcidid>0000-0002-7853-0533 ; 0000-0003-2434-5049 ; 0000-0002-2171-1229 ; 0000-0003-2735-8048 ; 0000-0003-4791-5112 ; 0000-0002-1998-3751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516658/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516658/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37560916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marx, Sinduja K</creatorcontrib><creatorcontrib>Mickolajczyk, Keith J</creatorcontrib><creatorcontrib>Craig, Jonathan M</creatorcontrib><creatorcontrib>Thomas, Christopher A</creatorcontrib><creatorcontrib>Pfeffer, Akira M</creatorcontrib><creatorcontrib>Abell, Sarah J</creatorcontrib><creatorcontrib>Carrasco, Jessica D</creatorcontrib><creatorcontrib>Franzi, Michaela C</creatorcontrib><creatorcontrib>Huang, Jesse R</creatorcontrib><creatorcontrib>Kim, Hwanhee C</creatorcontrib><creatorcontrib>Brinkerhoff, Henry</creatorcontrib><creatorcontrib>Kapoor, Tarun M</creatorcontrib><creatorcontrib>Gundlach, Jens H</creatorcontrib><creatorcontrib>Laszlo, Andrew H</creatorcontrib><title>Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The genome of SARS-CoV-2 encodes for a helicase (nsp13) that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 turns ATP-hydrolysis into directed motion along nucleic acid strands. We measured nsp13 both as it translocates along single-stranded DNA or unwinds double-stranded DNA. Our data reveal nsp13's single-nucleotide steps, translocating at ∼1000 nt/s or unwinding at ∼100 bp/s. Nanopore tweezers' high spatiotemporal resolution enables detailed kinetic analysis of nsp13 motion. As a proof-of-principle for inhibition studies, we observed nsp13's motion in the presence of the ATPase inhibitor ATPγS. We construct a detailed picture of inhibition in which ATPγS has multiple mechanisms of inhibition. The dominant mechanism of inhibition depends on the application of assisting force. This lays the groundwork for future single-molecule inhibition studies with viral helicases.</description><subject>Nucleic Acid Enzymes</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkd1LwzAUxYMobk6ffJc-ChKXr6bpk4zhFwwGTn0NaZOs0a6ZSTvwv7djc-jTfbi_c87lHgAuMbrFKKfjRoXx8lNpztERGGLKCWQ5J8dgiChKIUZMDMBZjB8IYYZTdgoGNEs5yjEfgvm8iCZsXLNMXFO5wrXON4m3SVuZZDF5WcCpf4ckqUztShVNotok9nRtYNOVtfGt0yYJJvq620rPwYlVdTQX-zkCbw_3r9MnOJs_Pk8nM1hSQVqotMiQZtbq1GorNCI5YSnOsc41pTrLU5SxzGoshOKYZ6ogFKFCq14mTEHpCNztfNddsTK6NE0bVC3Xwa1U-JZeOfl_07hKLv1GYpRizlPRO1zvHYL_6kxs5crF0tS1aozvoiSCCcH62LxHb3ZoGXyMwdhDDkZy24HsO5D7Dnr66u9pB_b36fQH9bOERw</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>Marx, Sinduja K</creator><creator>Mickolajczyk, Keith J</creator><creator>Craig, Jonathan M</creator><creator>Thomas, Christopher A</creator><creator>Pfeffer, Akira M</creator><creator>Abell, Sarah J</creator><creator>Carrasco, Jessica D</creator><creator>Franzi, Michaela C</creator><creator>Huang, Jesse R</creator><creator>Kim, Hwanhee C</creator><creator>Brinkerhoff, Henry</creator><creator>Kapoor, Tarun M</creator><creator>Gundlach, Jens H</creator><creator>Laszlo, Andrew H</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7853-0533</orcidid><orcidid>https://orcid.org/0000-0003-2434-5049</orcidid><orcidid>https://orcid.org/0000-0002-2171-1229</orcidid><orcidid>https://orcid.org/0000-0003-2735-8048</orcidid><orcidid>https://orcid.org/0000-0003-4791-5112</orcidid><orcidid>https://orcid.org/0000-0002-1998-3751</orcidid></search><sort><creationdate>20230922</creationdate><title>Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution</title><author>Marx, Sinduja K ; Mickolajczyk, Keith J ; Craig, Jonathan M ; Thomas, Christopher A ; Pfeffer, Akira M ; Abell, Sarah J ; Carrasco, Jessica D ; Franzi, Michaela C ; Huang, Jesse R ; Kim, Hwanhee C ; Brinkerhoff, Henry ; Kapoor, Tarun M ; Gundlach, Jens H ; Laszlo, Andrew H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-ad870d4ffd5fdf8d029245191d9d33d7950747fd188a6167ab2300bda8708eb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Nucleic Acid Enzymes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marx, Sinduja K</creatorcontrib><creatorcontrib>Mickolajczyk, Keith J</creatorcontrib><creatorcontrib>Craig, Jonathan M</creatorcontrib><creatorcontrib>Thomas, Christopher A</creatorcontrib><creatorcontrib>Pfeffer, Akira M</creatorcontrib><creatorcontrib>Abell, Sarah J</creatorcontrib><creatorcontrib>Carrasco, Jessica D</creatorcontrib><creatorcontrib>Franzi, Michaela C</creatorcontrib><creatorcontrib>Huang, Jesse R</creatorcontrib><creatorcontrib>Kim, Hwanhee C</creatorcontrib><creatorcontrib>Brinkerhoff, Henry</creatorcontrib><creatorcontrib>Kapoor, Tarun M</creatorcontrib><creatorcontrib>Gundlach, Jens H</creatorcontrib><creatorcontrib>Laszlo, Andrew H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marx, Sinduja K</au><au>Mickolajczyk, Keith J</au><au>Craig, Jonathan M</au><au>Thomas, Christopher A</au><au>Pfeffer, Akira M</au><au>Abell, Sarah J</au><au>Carrasco, Jessica D</au><au>Franzi, Michaela C</au><au>Huang, Jesse R</au><au>Kim, Hwanhee C</au><au>Brinkerhoff, Henry</au><au>Kapoor, Tarun M</au><au>Gundlach, Jens H</au><au>Laszlo, Andrew H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2023-09-22</date><risdate>2023</risdate><volume>51</volume><issue>17</issue><spage>9266</spage><epage>9278</epage><pages>9266-9278</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>The genome of SARS-CoV-2 encodes for a helicase (nsp13) that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 turns ATP-hydrolysis into directed motion along nucleic acid strands. We measured nsp13 both as it translocates along single-stranded DNA or unwinds double-stranded DNA. Our data reveal nsp13's single-nucleotide steps, translocating at ∼1000 nt/s or unwinding at ∼100 bp/s. Nanopore tweezers' high spatiotemporal resolution enables detailed kinetic analysis of nsp13 motion. As a proof-of-principle for inhibition studies, we observed nsp13's motion in the presence of the ATPase inhibitor ATPγS. We construct a detailed picture of inhibition in which ATPγS has multiple mechanisms of inhibition. The dominant mechanism of inhibition depends on the application of assisting force. This lays the groundwork for future single-molecule inhibition studies with viral helicases.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>37560916</pmid><doi>10.1093/nar/gkad660</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7853-0533</orcidid><orcidid>https://orcid.org/0000-0003-2434-5049</orcidid><orcidid>https://orcid.org/0000-0002-2171-1229</orcidid><orcidid>https://orcid.org/0000-0003-2735-8048</orcidid><orcidid>https://orcid.org/0000-0003-4791-5112</orcidid><orcidid>https://orcid.org/0000-0002-1998-3751</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2023-09, Vol.51 (17), p.9266-9278
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10516658
source Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Nucleic Acid Enzymes
title Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observing%20inhibition%20of%20the%20SARS-CoV-2%20helicase%20at%20single-nucleotide%20resolution&rft.jtitle=Nucleic%20acids%20research&rft.au=Marx,%20Sinduja%20K&rft.date=2023-09-22&rft.volume=51&rft.issue=17&rft.spage=9266&rft.epage=9278&rft.pages=9266-9278&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkad660&rft_dat=%3Cproquest_pubme%3E2848842309%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848842309&rft_id=info:pmid/37560916&rfr_iscdi=true