Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography
The aim of our study is to validate a totally automated deep learning (DL)-based segmentation pipeline to screen abdominal aortic aneurysms (AAA) in computed tomography angiography (CTA) scans. We retrospectively evaluated 73 thoraco-abdominal CTAs (48 AAA and 25 control CTA) by means of a DL-based...
Gespeichert in:
Veröffentlicht in: | Journal of digital imaging 2023-10, Vol.36 (5), p.2125-2137 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2137 |
---|---|
container_issue | 5 |
container_start_page | 2125 |
container_title | Journal of digital imaging |
container_volume | 36 |
creator | Spinella, Giovanni Fantazzini, Alice Finotello, Alice Vincenzi, Elena Boschetti, Gian Antonio Brutti, Francesca Magliocco, Marco Pane, Bianca Basso, Curzio Conti, Michele |
description | The aim of our study is to validate a totally automated deep learning (DL)-based segmentation pipeline to screen abdominal aortic aneurysms (AAA) in computed tomography angiography (CTA) scans. We retrospectively evaluated 73 thoraco-abdominal CTAs (48 AAA and 25 control CTA) by means of a DL-based segmentation pipeline built on a 2.5D convolutional neural network (CNN) architecture to segment lumen and thrombus of the aorta. The maximum aortic diameter of the abdominal tract was compared using a threshold value (30 mm). Blinded manual measurements from a radiologist were done in order to create a true comparison. The screening pipeline was tested on 48 patients with aneurysm and 25 without aneurysm. The average diameter manually measured was 51.1 ± 14.4 mm for patients with aneurysms and 21.7 ± 3.6 mm for patients without aneurysms. The pipeline correctly classified 47 AAA out of 48 and 24 control patients out of 25 with 97% accuracy, 98% sensitivity, and 96% specificity. The automated pipeline of aneurysm measurements in the abdominal tract reported a median error with regard to the maximum abdominal diameter measurement of 1.3 mm. Our approach allowed for the maximum diameter of 51.2 ± 14.3 mm in patients with aneurysm and 22.0 ± 4.0 mm in patients without an aneurysm. The DL-based screening for AAA is a feasible and accurate method, calling for further validation using a larger pool of diagnostic images towards its clinical use. |
doi_str_mv | 10.1007/s10278-023-00866-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10501994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864701119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-c0284d54f1183bf2e8d9f5d24cdc514bec5f61938cc3bfb92336d4ea05ef81f83</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EomXhC3BAkbhwCXhsJ3ZOKFrxp1IlDlCJm-U4k9RVYgc7qbTfHpddSuHAySPN7z3PzCPkJdC3QKl8l4AyqUrKeEmpqusSHpFzqEGVksnvjx_UZ-RZSjeUgqykeErOuBRUKsHPydzG1Q3OOjMVF37FaXIjeotFuyyTs2Z1wRdrKL7aiOiLtuvD7HyG25CFtmg9bvGQ5uIqOT8W-zAv24p9lsxhjGa5PmRkdKf6OXkymCnhi9O7I1cfP3zbfy4vv3y62LeXpRWyWktLmRJ9JQYAxbuBoeqboeqZsL2tQHRoq6GGhitrc7trGOd1L9DQCgcFg-I78v7ou2zdjL1Fv0Yz6SW62cSDDsbpvzveXesx3GqgFYWmEdnhzckhhh8bplXPLtl8HuMxbEkzxXnTSC5pRl__g96ELeYb3VG1kBQgz7oj7EjZGFKKONxPA1TfxamPceocp_4Vp4YsevVwj3vJ7_wywI9Ayi0_Yvzz939sfwIz4q3t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864701119</pqid></control><display><type>article</type><title>Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography</title><source>Free E-Journal (出版社公開部分のみ)</source><source>PubMed Central</source><creator>Spinella, Giovanni ; Fantazzini, Alice ; Finotello, Alice ; Vincenzi, Elena ; Boschetti, Gian Antonio ; Brutti, Francesca ; Magliocco, Marco ; Pane, Bianca ; Basso, Curzio ; Conti, Michele</creator><creatorcontrib>Spinella, Giovanni ; Fantazzini, Alice ; Finotello, Alice ; Vincenzi, Elena ; Boschetti, Gian Antonio ; Brutti, Francesca ; Magliocco, Marco ; Pane, Bianca ; Basso, Curzio ; Conti, Michele</creatorcontrib><description>The aim of our study is to validate a totally automated deep learning (DL)-based segmentation pipeline to screen abdominal aortic aneurysms (AAA) in computed tomography angiography (CTA) scans. We retrospectively evaluated 73 thoraco-abdominal CTAs (48 AAA and 25 control CTA) by means of a DL-based segmentation pipeline built on a 2.5D convolutional neural network (CNN) architecture to segment lumen and thrombus of the aorta. The maximum aortic diameter of the abdominal tract was compared using a threshold value (30 mm). Blinded manual measurements from a radiologist were done in order to create a true comparison. The screening pipeline was tested on 48 patients with aneurysm and 25 without aneurysm. The average diameter manually measured was 51.1 ± 14.4 mm for patients with aneurysms and 21.7 ± 3.6 mm for patients without aneurysms. The pipeline correctly classified 47 AAA out of 48 and 24 control patients out of 25 with 97% accuracy, 98% sensitivity, and 96% specificity. The automated pipeline of aneurysm measurements in the abdominal tract reported a median error with regard to the maximum abdominal diameter measurement of 1.3 mm. Our approach allowed for the maximum diameter of 51.2 ± 14.3 mm in patients with aneurysm and 22.0 ± 4.0 mm in patients without an aneurysm. The DL-based screening for AAA is a feasible and accurate method, calling for further validation using a larger pool of diagnostic images towards its clinical use.</description><identifier>ISSN: 1618-727X</identifier><identifier>ISSN: 0897-1889</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-023-00866-1</identifier><identifier>PMID: 37407843</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Abdomen ; Aneurysms ; Angiography ; Aorta ; Aortic aneurysms ; Artificial intelligence ; Artificial neural networks ; Automation ; Computed tomography ; Deep learning ; Diameters ; Image segmentation ; Imaging ; Machine learning ; Medical imaging ; Medicine ; Medicine & Public Health ; Neural networks ; Radiology ; Thrombosis ; Tomography</subject><ispartof>Journal of digital imaging, 2023-10, Vol.36 (5), p.2125-2137</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-c0284d54f1183bf2e8d9f5d24cdc514bec5f61938cc3bfb92336d4ea05ef81f83</citedby><cites>FETCH-LOGICAL-c475t-c0284d54f1183bf2e8d9f5d24cdc514bec5f61938cc3bfb92336d4ea05ef81f83</cites><orcidid>0000-0001-6373-0199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501994/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501994/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37407843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spinella, Giovanni</creatorcontrib><creatorcontrib>Fantazzini, Alice</creatorcontrib><creatorcontrib>Finotello, Alice</creatorcontrib><creatorcontrib>Vincenzi, Elena</creatorcontrib><creatorcontrib>Boschetti, Gian Antonio</creatorcontrib><creatorcontrib>Brutti, Francesca</creatorcontrib><creatorcontrib>Magliocco, Marco</creatorcontrib><creatorcontrib>Pane, Bianca</creatorcontrib><creatorcontrib>Basso, Curzio</creatorcontrib><creatorcontrib>Conti, Michele</creatorcontrib><title>Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><addtitle>J Digit Imaging</addtitle><description>The aim of our study is to validate a totally automated deep learning (DL)-based segmentation pipeline to screen abdominal aortic aneurysms (AAA) in computed tomography angiography (CTA) scans. We retrospectively evaluated 73 thoraco-abdominal CTAs (48 AAA and 25 control CTA) by means of a DL-based segmentation pipeline built on a 2.5D convolutional neural network (CNN) architecture to segment lumen and thrombus of the aorta. The maximum aortic diameter of the abdominal tract was compared using a threshold value (30 mm). Blinded manual measurements from a radiologist were done in order to create a true comparison. The screening pipeline was tested on 48 patients with aneurysm and 25 without aneurysm. The average diameter manually measured was 51.1 ± 14.4 mm for patients with aneurysms and 21.7 ± 3.6 mm for patients without aneurysms. The pipeline correctly classified 47 AAA out of 48 and 24 control patients out of 25 with 97% accuracy, 98% sensitivity, and 96% specificity. The automated pipeline of aneurysm measurements in the abdominal tract reported a median error with regard to the maximum abdominal diameter measurement of 1.3 mm. Our approach allowed for the maximum diameter of 51.2 ± 14.3 mm in patients with aneurysm and 22.0 ± 4.0 mm in patients without an aneurysm. The DL-based screening for AAA is a feasible and accurate method, calling for further validation using a larger pool of diagnostic images towards its clinical use.</description><subject>Abdomen</subject><subject>Aneurysms</subject><subject>Angiography</subject><subject>Aorta</subject><subject>Aortic aneurysms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Computed tomography</subject><subject>Deep learning</subject><subject>Diameters</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neural networks</subject><subject>Radiology</subject><subject>Thrombosis</subject><subject>Tomography</subject><issn>1618-727X</issn><issn>0897-1889</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9v1DAQxS0EomXhC3BAkbhwCXhsJ3ZOKFrxp1IlDlCJm-U4k9RVYgc7qbTfHpddSuHAySPN7z3PzCPkJdC3QKl8l4AyqUrKeEmpqusSHpFzqEGVksnvjx_UZ-RZSjeUgqykeErOuBRUKsHPydzG1Q3OOjMVF37FaXIjeotFuyyTs2Z1wRdrKL7aiOiLtuvD7HyG25CFtmg9bvGQ5uIqOT8W-zAv24p9lsxhjGa5PmRkdKf6OXkymCnhi9O7I1cfP3zbfy4vv3y62LeXpRWyWktLmRJ9JQYAxbuBoeqboeqZsL2tQHRoq6GGhitrc7trGOd1L9DQCgcFg-I78v7ou2zdjL1Fv0Yz6SW62cSDDsbpvzveXesx3GqgFYWmEdnhzckhhh8bplXPLtl8HuMxbEkzxXnTSC5pRl__g96ELeYb3VG1kBQgz7oj7EjZGFKKONxPA1TfxamPceocp_4Vp4YsevVwj3vJ7_wywI9Ayi0_Yvzz939sfwIz4q3t</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Spinella, Giovanni</creator><creator>Fantazzini, Alice</creator><creator>Finotello, Alice</creator><creator>Vincenzi, Elena</creator><creator>Boschetti, Gian Antonio</creator><creator>Brutti, Francesca</creator><creator>Magliocco, Marco</creator><creator>Pane, Bianca</creator><creator>Basso, Curzio</creator><creator>Conti, Michele</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6373-0199</orcidid></search><sort><creationdate>20231001</creationdate><title>Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography</title><author>Spinella, Giovanni ; Fantazzini, Alice ; Finotello, Alice ; Vincenzi, Elena ; Boschetti, Gian Antonio ; Brutti, Francesca ; Magliocco, Marco ; Pane, Bianca ; Basso, Curzio ; Conti, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-c0284d54f1183bf2e8d9f5d24cdc514bec5f61938cc3bfb92336d4ea05ef81f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abdomen</topic><topic>Aneurysms</topic><topic>Angiography</topic><topic>Aorta</topic><topic>Aortic aneurysms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Computed tomography</topic><topic>Deep learning</topic><topic>Diameters</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neural networks</topic><topic>Radiology</topic><topic>Thrombosis</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spinella, Giovanni</creatorcontrib><creatorcontrib>Fantazzini, Alice</creatorcontrib><creatorcontrib>Finotello, Alice</creatorcontrib><creatorcontrib>Vincenzi, Elena</creatorcontrib><creatorcontrib>Boschetti, Gian Antonio</creatorcontrib><creatorcontrib>Brutti, Francesca</creatorcontrib><creatorcontrib>Magliocco, Marco</creatorcontrib><creatorcontrib>Pane, Bianca</creatorcontrib><creatorcontrib>Basso, Curzio</creatorcontrib><creatorcontrib>Conti, Michele</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spinella, Giovanni</au><au>Fantazzini, Alice</au><au>Finotello, Alice</au><au>Vincenzi, Elena</au><au>Boschetti, Gian Antonio</au><au>Brutti, Francesca</au><au>Magliocco, Marco</au><au>Pane, Bianca</au><au>Basso, Curzio</au><au>Conti, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography</atitle><jtitle>Journal of digital imaging</jtitle><stitle>J Digit Imaging</stitle><addtitle>J Digit Imaging</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>36</volume><issue>5</issue><spage>2125</spage><epage>2137</epage><pages>2125-2137</pages><issn>1618-727X</issn><issn>0897-1889</issn><eissn>1618-727X</eissn><abstract>The aim of our study is to validate a totally automated deep learning (DL)-based segmentation pipeline to screen abdominal aortic aneurysms (AAA) in computed tomography angiography (CTA) scans. We retrospectively evaluated 73 thoraco-abdominal CTAs (48 AAA and 25 control CTA) by means of a DL-based segmentation pipeline built on a 2.5D convolutional neural network (CNN) architecture to segment lumen and thrombus of the aorta. The maximum aortic diameter of the abdominal tract was compared using a threshold value (30 mm). Blinded manual measurements from a radiologist were done in order to create a true comparison. The screening pipeline was tested on 48 patients with aneurysm and 25 without aneurysm. The average diameter manually measured was 51.1 ± 14.4 mm for patients with aneurysms and 21.7 ± 3.6 mm for patients without aneurysms. The pipeline correctly classified 47 AAA out of 48 and 24 control patients out of 25 with 97% accuracy, 98% sensitivity, and 96% specificity. The automated pipeline of aneurysm measurements in the abdominal tract reported a median error with regard to the maximum abdominal diameter measurement of 1.3 mm. Our approach allowed for the maximum diameter of 51.2 ± 14.3 mm in patients with aneurysm and 22.0 ± 4.0 mm in patients without an aneurysm. The DL-based screening for AAA is a feasible and accurate method, calling for further validation using a larger pool of diagnostic images towards its clinical use.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>37407843</pmid><doi>10.1007/s10278-023-00866-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6373-0199</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-727X |
ispartof | Journal of digital imaging, 2023-10, Vol.36 (5), p.2125-2137 |
issn | 1618-727X 0897-1889 1618-727X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10501994 |
source | Free E-Journal (出版社公開部分のみ); PubMed Central |
subjects | Abdomen Aneurysms Angiography Aorta Aortic aneurysms Artificial intelligence Artificial neural networks Automation Computed tomography Deep learning Diameters Image segmentation Imaging Machine learning Medical imaging Medicine Medicine & Public Health Neural networks Radiology Thrombosis Tomography |
title | Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Application%20to%20Screen%20Abdominal%20Aortic%20Aneurysm%20Using%20Computed%20tomography%20Angiography&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Spinella,%20Giovanni&rft.date=2023-10-01&rft.volume=36&rft.issue=5&rft.spage=2125&rft.epage=2137&rft.pages=2125-2137&rft.issn=1618-727X&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-023-00866-1&rft_dat=%3Cproquest_pubme%3E2864701119%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864701119&rft_id=info:pmid/37407843&rfr_iscdi=true |