Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography

The aim of our study is to validate a totally automated deep learning (DL)-based segmentation pipeline to screen abdominal aortic aneurysms (AAA) in computed tomography angiography (CTA) scans. We retrospectively evaluated 73 thoraco-abdominal CTAs (48 AAA and 25 control CTA) by means of a DL-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of digital imaging 2023-10, Vol.36 (5), p.2125-2137
Hauptverfasser: Spinella, Giovanni, Fantazzini, Alice, Finotello, Alice, Vincenzi, Elena, Boschetti, Gian Antonio, Brutti, Francesca, Magliocco, Marco, Pane, Bianca, Basso, Curzio, Conti, Michele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2137
container_issue 5
container_start_page 2125
container_title Journal of digital imaging
container_volume 36
creator Spinella, Giovanni
Fantazzini, Alice
Finotello, Alice
Vincenzi, Elena
Boschetti, Gian Antonio
Brutti, Francesca
Magliocco, Marco
Pane, Bianca
Basso, Curzio
Conti, Michele
description The aim of our study is to validate a totally automated deep learning (DL)-based segmentation pipeline to screen abdominal aortic aneurysms (AAA) in computed tomography angiography (CTA) scans. We retrospectively evaluated 73 thoraco-abdominal CTAs (48 AAA and 25 control CTA) by means of a DL-based segmentation pipeline built on a 2.5D convolutional neural network (CNN) architecture to segment lumen and thrombus of the aorta. The maximum aortic diameter of the abdominal tract was compared using a threshold value (30 mm). Blinded manual measurements from a radiologist were done in order to create a true comparison. The screening pipeline was tested on 48 patients with aneurysm and 25 without aneurysm. The average diameter manually measured was 51.1 ± 14.4 mm for patients with aneurysms and 21.7 ± 3.6 mm for patients without aneurysms. The pipeline correctly classified 47 AAA out of 48 and 24 control patients out of 25 with 97% accuracy, 98% sensitivity, and 96% specificity. The automated pipeline of aneurysm measurements in the abdominal tract reported a median error with regard to the maximum abdominal diameter measurement of 1.3 mm. Our approach allowed for the maximum diameter of 51.2 ± 14.3 mm in patients with aneurysm and 22.0 ± 4.0 mm in patients without an aneurysm. The DL-based screening for AAA is a feasible and accurate method, calling for further validation using a larger pool of diagnostic images towards its clinical use.
doi_str_mv 10.1007/s10278-023-00866-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10501994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864701119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-c0284d54f1183bf2e8d9f5d24cdc514bec5f61938cc3bfb92336d4ea05ef81f83</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EomXhC3BAkbhwCXhsJ3ZOKFrxp1IlDlCJm-U4k9RVYgc7qbTfHpddSuHAySPN7z3PzCPkJdC3QKl8l4AyqUrKeEmpqusSHpFzqEGVksnvjx_UZ-RZSjeUgqykeErOuBRUKsHPydzG1Q3OOjMVF37FaXIjeotFuyyTs2Z1wRdrKL7aiOiLtuvD7HyG25CFtmg9bvGQ5uIqOT8W-zAv24p9lsxhjGa5PmRkdKf6OXkymCnhi9O7I1cfP3zbfy4vv3y62LeXpRWyWktLmRJ9JQYAxbuBoeqboeqZsL2tQHRoq6GGhitrc7trGOd1L9DQCgcFg-I78v7ou2zdjL1Fv0Yz6SW62cSDDsbpvzveXesx3GqgFYWmEdnhzckhhh8bplXPLtl8HuMxbEkzxXnTSC5pRl__g96ELeYb3VG1kBQgz7oj7EjZGFKKONxPA1TfxamPceocp_4Vp4YsevVwj3vJ7_wywI9Ayi0_Yvzz939sfwIz4q3t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864701119</pqid></control><display><type>article</type><title>Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography</title><source>Free E-Journal (出版社公開部分のみ)</source><source>PubMed Central</source><creator>Spinella, Giovanni ; Fantazzini, Alice ; Finotello, Alice ; Vincenzi, Elena ; Boschetti, Gian Antonio ; Brutti, Francesca ; Magliocco, Marco ; Pane, Bianca ; Basso, Curzio ; Conti, Michele</creator><creatorcontrib>Spinella, Giovanni ; Fantazzini, Alice ; Finotello, Alice ; Vincenzi, Elena ; Boschetti, Gian Antonio ; Brutti, Francesca ; Magliocco, Marco ; Pane, Bianca ; Basso, Curzio ; Conti, Michele</creatorcontrib><description>The aim of our study is to validate a totally automated deep learning (DL)-based segmentation pipeline to screen abdominal aortic aneurysms (AAA) in computed tomography angiography (CTA) scans. We retrospectively evaluated 73 thoraco-abdominal CTAs (48 AAA and 25 control CTA) by means of a DL-based segmentation pipeline built on a 2.5D convolutional neural network (CNN) architecture to segment lumen and thrombus of the aorta. The maximum aortic diameter of the abdominal tract was compared using a threshold value (30 mm). Blinded manual measurements from a radiologist were done in order to create a true comparison. The screening pipeline was tested on 48 patients with aneurysm and 25 without aneurysm. The average diameter manually measured was 51.1 ± 14.4 mm for patients with aneurysms and 21.7 ± 3.6 mm for patients without aneurysms. The pipeline correctly classified 47 AAA out of 48 and 24 control patients out of 25 with 97% accuracy, 98% sensitivity, and 96% specificity. The automated pipeline of aneurysm measurements in the abdominal tract reported a median error with regard to the maximum abdominal diameter measurement of 1.3 mm. Our approach allowed for the maximum diameter of 51.2 ± 14.3 mm in patients with aneurysm and 22.0 ± 4.0 mm in patients without an aneurysm. The DL-based screening for AAA is a feasible and accurate method, calling for further validation using a larger pool of diagnostic images towards its clinical use.</description><identifier>ISSN: 1618-727X</identifier><identifier>ISSN: 0897-1889</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-023-00866-1</identifier><identifier>PMID: 37407843</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Abdomen ; Aneurysms ; Angiography ; Aorta ; Aortic aneurysms ; Artificial intelligence ; Artificial neural networks ; Automation ; Computed tomography ; Deep learning ; Diameters ; Image segmentation ; Imaging ; Machine learning ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Neural networks ; Radiology ; Thrombosis ; Tomography</subject><ispartof>Journal of digital imaging, 2023-10, Vol.36 (5), p.2125-2137</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-c0284d54f1183bf2e8d9f5d24cdc514bec5f61938cc3bfb92336d4ea05ef81f83</citedby><cites>FETCH-LOGICAL-c475t-c0284d54f1183bf2e8d9f5d24cdc514bec5f61938cc3bfb92336d4ea05ef81f83</cites><orcidid>0000-0001-6373-0199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501994/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501994/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37407843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spinella, Giovanni</creatorcontrib><creatorcontrib>Fantazzini, Alice</creatorcontrib><creatorcontrib>Finotello, Alice</creatorcontrib><creatorcontrib>Vincenzi, Elena</creatorcontrib><creatorcontrib>Boschetti, Gian Antonio</creatorcontrib><creatorcontrib>Brutti, Francesca</creatorcontrib><creatorcontrib>Magliocco, Marco</creatorcontrib><creatorcontrib>Pane, Bianca</creatorcontrib><creatorcontrib>Basso, Curzio</creatorcontrib><creatorcontrib>Conti, Michele</creatorcontrib><title>Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><addtitle>J Digit Imaging</addtitle><description>The aim of our study is to validate a totally automated deep learning (DL)-based segmentation pipeline to screen abdominal aortic aneurysms (AAA) in computed tomography angiography (CTA) scans. We retrospectively evaluated 73 thoraco-abdominal CTAs (48 AAA and 25 control CTA) by means of a DL-based segmentation pipeline built on a 2.5D convolutional neural network (CNN) architecture to segment lumen and thrombus of the aorta. The maximum aortic diameter of the abdominal tract was compared using a threshold value (30 mm). Blinded manual measurements from a radiologist were done in order to create a true comparison. The screening pipeline was tested on 48 patients with aneurysm and 25 without aneurysm. The average diameter manually measured was 51.1 ± 14.4 mm for patients with aneurysms and 21.7 ± 3.6 mm for patients without aneurysms. The pipeline correctly classified 47 AAA out of 48 and 24 control patients out of 25 with 97% accuracy, 98% sensitivity, and 96% specificity. The automated pipeline of aneurysm measurements in the abdominal tract reported a median error with regard to the maximum abdominal diameter measurement of 1.3 mm. Our approach allowed for the maximum diameter of 51.2 ± 14.3 mm in patients with aneurysm and 22.0 ± 4.0 mm in patients without an aneurysm. The DL-based screening for AAA is a feasible and accurate method, calling for further validation using a larger pool of diagnostic images towards its clinical use.</description><subject>Abdomen</subject><subject>Aneurysms</subject><subject>Angiography</subject><subject>Aorta</subject><subject>Aortic aneurysms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Computed tomography</subject><subject>Deep learning</subject><subject>Diameters</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neural networks</subject><subject>Radiology</subject><subject>Thrombosis</subject><subject>Tomography</subject><issn>1618-727X</issn><issn>0897-1889</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9v1DAQxS0EomXhC3BAkbhwCXhsJ3ZOKFrxp1IlDlCJm-U4k9RVYgc7qbTfHpddSuHAySPN7z3PzCPkJdC3QKl8l4AyqUrKeEmpqusSHpFzqEGVksnvjx_UZ-RZSjeUgqykeErOuBRUKsHPydzG1Q3OOjMVF37FaXIjeotFuyyTs2Z1wRdrKL7aiOiLtuvD7HyG25CFtmg9bvGQ5uIqOT8W-zAv24p9lsxhjGa5PmRkdKf6OXkymCnhi9O7I1cfP3zbfy4vv3y62LeXpRWyWktLmRJ9JQYAxbuBoeqboeqZsL2tQHRoq6GGhitrc7trGOd1L9DQCgcFg-I78v7ou2zdjL1Fv0Yz6SW62cSDDsbpvzveXesx3GqgFYWmEdnhzckhhh8bplXPLtl8HuMxbEkzxXnTSC5pRl__g96ELeYb3VG1kBQgz7oj7EjZGFKKONxPA1TfxamPceocp_4Vp4YsevVwj3vJ7_wywI9Ayi0_Yvzz939sfwIz4q3t</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Spinella, Giovanni</creator><creator>Fantazzini, Alice</creator><creator>Finotello, Alice</creator><creator>Vincenzi, Elena</creator><creator>Boschetti, Gian Antonio</creator><creator>Brutti, Francesca</creator><creator>Magliocco, Marco</creator><creator>Pane, Bianca</creator><creator>Basso, Curzio</creator><creator>Conti, Michele</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6373-0199</orcidid></search><sort><creationdate>20231001</creationdate><title>Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography</title><author>Spinella, Giovanni ; Fantazzini, Alice ; Finotello, Alice ; Vincenzi, Elena ; Boschetti, Gian Antonio ; Brutti, Francesca ; Magliocco, Marco ; Pane, Bianca ; Basso, Curzio ; Conti, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-c0284d54f1183bf2e8d9f5d24cdc514bec5f61938cc3bfb92336d4ea05ef81f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abdomen</topic><topic>Aneurysms</topic><topic>Angiography</topic><topic>Aorta</topic><topic>Aortic aneurysms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Computed tomography</topic><topic>Deep learning</topic><topic>Diameters</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neural networks</topic><topic>Radiology</topic><topic>Thrombosis</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spinella, Giovanni</creatorcontrib><creatorcontrib>Fantazzini, Alice</creatorcontrib><creatorcontrib>Finotello, Alice</creatorcontrib><creatorcontrib>Vincenzi, Elena</creatorcontrib><creatorcontrib>Boschetti, Gian Antonio</creatorcontrib><creatorcontrib>Brutti, Francesca</creatorcontrib><creatorcontrib>Magliocco, Marco</creatorcontrib><creatorcontrib>Pane, Bianca</creatorcontrib><creatorcontrib>Basso, Curzio</creatorcontrib><creatorcontrib>Conti, Michele</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spinella, Giovanni</au><au>Fantazzini, Alice</au><au>Finotello, Alice</au><au>Vincenzi, Elena</au><au>Boschetti, Gian Antonio</au><au>Brutti, Francesca</au><au>Magliocco, Marco</au><au>Pane, Bianca</au><au>Basso, Curzio</au><au>Conti, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography</atitle><jtitle>Journal of digital imaging</jtitle><stitle>J Digit Imaging</stitle><addtitle>J Digit Imaging</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>36</volume><issue>5</issue><spage>2125</spage><epage>2137</epage><pages>2125-2137</pages><issn>1618-727X</issn><issn>0897-1889</issn><eissn>1618-727X</eissn><abstract>The aim of our study is to validate a totally automated deep learning (DL)-based segmentation pipeline to screen abdominal aortic aneurysms (AAA) in computed tomography angiography (CTA) scans. We retrospectively evaluated 73 thoraco-abdominal CTAs (48 AAA and 25 control CTA) by means of a DL-based segmentation pipeline built on a 2.5D convolutional neural network (CNN) architecture to segment lumen and thrombus of the aorta. The maximum aortic diameter of the abdominal tract was compared using a threshold value (30 mm). Blinded manual measurements from a radiologist were done in order to create a true comparison. The screening pipeline was tested on 48 patients with aneurysm and 25 without aneurysm. The average diameter manually measured was 51.1 ± 14.4 mm for patients with aneurysms and 21.7 ± 3.6 mm for patients without aneurysms. The pipeline correctly classified 47 AAA out of 48 and 24 control patients out of 25 with 97% accuracy, 98% sensitivity, and 96% specificity. The automated pipeline of aneurysm measurements in the abdominal tract reported a median error with regard to the maximum abdominal diameter measurement of 1.3 mm. Our approach allowed for the maximum diameter of 51.2 ± 14.3 mm in patients with aneurysm and 22.0 ± 4.0 mm in patients without an aneurysm. The DL-based screening for AAA is a feasible and accurate method, calling for further validation using a larger pool of diagnostic images towards its clinical use.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>37407843</pmid><doi>10.1007/s10278-023-00866-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6373-0199</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1618-727X
ispartof Journal of digital imaging, 2023-10, Vol.36 (5), p.2125-2137
issn 1618-727X
0897-1889
1618-727X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10501994
source Free E-Journal (出版社公開部分のみ); PubMed Central
subjects Abdomen
Aneurysms
Angiography
Aorta
Aortic aneurysms
Artificial intelligence
Artificial neural networks
Automation
Computed tomography
Deep learning
Diameters
Image segmentation
Imaging
Machine learning
Medical imaging
Medicine
Medicine & Public Health
Neural networks
Radiology
Thrombosis
Tomography
title Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Application%20to%20Screen%20Abdominal%20Aortic%20Aneurysm%20Using%20Computed%20tomography%20Angiography&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Spinella,%20Giovanni&rft.date=2023-10-01&rft.volume=36&rft.issue=5&rft.spage=2125&rft.epage=2137&rft.pages=2125-2137&rft.issn=1618-727X&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-023-00866-1&rft_dat=%3Cproquest_pubme%3E2864701119%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864701119&rft_id=info:pmid/37407843&rfr_iscdi=true