AI-dente: an open machine learning based tool to interpret nano-indentation data of soft tissues and materials

Nano-indentation is a promising method to identify the constitutive parameters of soft materials, including soft tissues. Especially when materials are very small and heterogeneous, nano-indentation allows mechanical interrogation where traditional methods may fail. However, because nano-indentation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2023-09, Vol.19 (35), p.671-672
Hauptverfasser: Giolando, Patrick, Kakaletsis, Sotirios, Zhang, Xuesong, Weickenmeier, Johannes, Castillo, Edward, Dortdivanlioglu, Berkin, Rausch, Manuel K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 672
container_issue 35
container_start_page 671
container_title Soft matter
container_volume 19
creator Giolando, Patrick
Kakaletsis, Sotirios
Zhang, Xuesong
Weickenmeier, Johannes
Castillo, Edward
Dortdivanlioglu, Berkin
Rausch, Manuel K
description Nano-indentation is a promising method to identify the constitutive parameters of soft materials, including soft tissues. Especially when materials are very small and heterogeneous, nano-indentation allows mechanical interrogation where traditional methods may fail. However, because nano-indentation does not yield a homogeneous deformation field, interpreting the resulting load-displacement curves is non-trivial and most investigators resort to simplified approaches based on the Hertzian solution. Unfortunately, for small samples and large indentation depths, these solutions are inaccurate. We set out to use machine learning to provide an alternative strategy. We first used the finite element method to create a large synthetic data set. We then used these data to train neural networks to inversely identify material parameters from load-displacement curves. To this end, we took two different approaches. First, we learned the indentation forward problem, which we then applied within an iterative framework to identify material parameters. Second, we learned the inverse problem of directly identifying material parameters. We show that both approaches are effective at identifying the parameters of the neo-Hookean and Gent models. Specifically, when applied to synthetic data, our approaches are accurate even for small sample sizes and at deep indentation. Additionally, our approaches are fast, especially compared to the inverse finite element approach. Finally, our approaches worked on unseen experimental data from thin mouse brain samples. Here, our approaches proved robust to experimental noise across over 1000 samples. By providing open access to our data and code, we hope to support others that conduct nano-indentation on soft materials. Machine learning can improve the identification of soft material parameters from nano-indentation experiments.
doi_str_mv 10.1039/d3sm00402c
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10499084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864215807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-c429dc8dcee5b6f4bb68b53d1fa96245d4458abd8d0e26d6b6c1aae11df13f4b3</originalsourceid><addsrcrecordid>eNpdks9rFTEQx0Ox9KcX70rASxG25tdms72U8rS2UOlBBW9hNsm2KbvJa5In-N-b9rVP7WUmMJ_5MjPfIPSGkmNKeP_R8jwTIggzW2iPdkI0Ugn1avPmP3fRfs53hHAlqNxBu7yTjPGu30Ph7LKxLhR3giHguHQBz2BufXB4cpCCDzd4gOwsLjFONWBf4bRMruAAITY-PLRD8TFgCwVwHHGOY8HF57xyucraKll7PEz5EG2PNbnXT_kA_Tj__H1x0Vxdf7lcnF01RrC-PEZrlDXOtYMcxTBINbTc0hF6yURrhWgVDFZZ4pi0cpCGAjhK7Uh5xfkBOl3rLlfD7KpOKAkmvUx-hvRbR_D6_0rwt_om_tKUiL4nSlSFoyeFFO_rHkXPPhs3TRBcXGXNVNvVa9KWVfT9C_QurlKo-1VKCkZbRbpKfVhTJsWckxs301CiH3zUn_i3r48-Lir87t_5N-izcRV4uwZSNpvq34_A_wACJKTq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864215807</pqid></control><display><type>article</type><title>AI-dente: an open machine learning based tool to interpret nano-indentation data of soft tissues and materials</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Giolando, Patrick ; Kakaletsis, Sotirios ; Zhang, Xuesong ; Weickenmeier, Johannes ; Castillo, Edward ; Dortdivanlioglu, Berkin ; Rausch, Manuel K</creator><creatorcontrib>Giolando, Patrick ; Kakaletsis, Sotirios ; Zhang, Xuesong ; Weickenmeier, Johannes ; Castillo, Edward ; Dortdivanlioglu, Berkin ; Rausch, Manuel K</creatorcontrib><description>Nano-indentation is a promising method to identify the constitutive parameters of soft materials, including soft tissues. Especially when materials are very small and heterogeneous, nano-indentation allows mechanical interrogation where traditional methods may fail. However, because nano-indentation does not yield a homogeneous deformation field, interpreting the resulting load-displacement curves is non-trivial and most investigators resort to simplified approaches based on the Hertzian solution. Unfortunately, for small samples and large indentation depths, these solutions are inaccurate. We set out to use machine learning to provide an alternative strategy. We first used the finite element method to create a large synthetic data set. We then used these data to train neural networks to inversely identify material parameters from load-displacement curves. To this end, we took two different approaches. First, we learned the indentation forward problem, which we then applied within an iterative framework to identify material parameters. Second, we learned the inverse problem of directly identifying material parameters. We show that both approaches are effective at identifying the parameters of the neo-Hookean and Gent models. Specifically, when applied to synthetic data, our approaches are accurate even for small sample sizes and at deep indentation. Additionally, our approaches are fast, especially compared to the inverse finite element approach. Finally, our approaches worked on unseen experimental data from thin mouse brain samples. Here, our approaches proved robust to experimental noise across over 1000 samples. By providing open access to our data and code, we hope to support others that conduct nano-indentation on soft materials. Machine learning can improve the identification of soft material parameters from nano-indentation experiments.</description><identifier>ISSN: 1744-683X</identifier><identifier>ISSN: 1744-6848</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d3sm00402c</identifier><identifier>PMID: 37622379</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Finite element method ; Forward problem ; Identification methods ; Interrogation ; Inverse problems ; Iterative methods ; Learning algorithms ; Machine Learning ; Nanoindentation ; Nanotechnology ; Neural networks ; Neural Networks, Computer ; Parameter identification ; Soft tissues ; Synthetic data</subject><ispartof>Soft matter, 2023-09, Vol.19 (35), p.671-672</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-c429dc8dcee5b6f4bb68b53d1fa96245d4458abd8d0e26d6b6c1aae11df13f4b3</citedby><cites>FETCH-LOGICAL-c429t-c429dc8dcee5b6f4bb68b53d1fa96245d4458abd8d0e26d6b6c1aae11df13f4b3</cites><orcidid>0000-0001-7105-1452 ; 0000-0003-1337-6472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37622379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giolando, Patrick</creatorcontrib><creatorcontrib>Kakaletsis, Sotirios</creatorcontrib><creatorcontrib>Zhang, Xuesong</creatorcontrib><creatorcontrib>Weickenmeier, Johannes</creatorcontrib><creatorcontrib>Castillo, Edward</creatorcontrib><creatorcontrib>Dortdivanlioglu, Berkin</creatorcontrib><creatorcontrib>Rausch, Manuel K</creatorcontrib><title>AI-dente: an open machine learning based tool to interpret nano-indentation data of soft tissues and materials</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Nano-indentation is a promising method to identify the constitutive parameters of soft materials, including soft tissues. Especially when materials are very small and heterogeneous, nano-indentation allows mechanical interrogation where traditional methods may fail. However, because nano-indentation does not yield a homogeneous deformation field, interpreting the resulting load-displacement curves is non-trivial and most investigators resort to simplified approaches based on the Hertzian solution. Unfortunately, for small samples and large indentation depths, these solutions are inaccurate. We set out to use machine learning to provide an alternative strategy. We first used the finite element method to create a large synthetic data set. We then used these data to train neural networks to inversely identify material parameters from load-displacement curves. To this end, we took two different approaches. First, we learned the indentation forward problem, which we then applied within an iterative framework to identify material parameters. Second, we learned the inverse problem of directly identifying material parameters. We show that both approaches are effective at identifying the parameters of the neo-Hookean and Gent models. Specifically, when applied to synthetic data, our approaches are accurate even for small sample sizes and at deep indentation. Additionally, our approaches are fast, especially compared to the inverse finite element approach. Finally, our approaches worked on unseen experimental data from thin mouse brain samples. Here, our approaches proved robust to experimental noise across over 1000 samples. By providing open access to our data and code, we hope to support others that conduct nano-indentation on soft materials. Machine learning can improve the identification of soft material parameters from nano-indentation experiments.</description><subject>Chemistry</subject><subject>Finite element method</subject><subject>Forward problem</subject><subject>Identification methods</subject><subject>Interrogation</subject><subject>Inverse problems</subject><subject>Iterative methods</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Nanoindentation</subject><subject>Nanotechnology</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Parameter identification</subject><subject>Soft tissues</subject><subject>Synthetic data</subject><issn>1744-683X</issn><issn>1744-6848</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdks9rFTEQx0Ox9KcX70rASxG25tdms72U8rS2UOlBBW9hNsm2KbvJa5In-N-b9rVP7WUmMJ_5MjPfIPSGkmNKeP_R8jwTIggzW2iPdkI0Ugn1avPmP3fRfs53hHAlqNxBu7yTjPGu30Ph7LKxLhR3giHguHQBz2BufXB4cpCCDzd4gOwsLjFONWBf4bRMruAAITY-PLRD8TFgCwVwHHGOY8HF57xyucraKll7PEz5EG2PNbnXT_kA_Tj__H1x0Vxdf7lcnF01RrC-PEZrlDXOtYMcxTBINbTc0hF6yURrhWgVDFZZ4pi0cpCGAjhK7Uh5xfkBOl3rLlfD7KpOKAkmvUx-hvRbR_D6_0rwt_om_tKUiL4nSlSFoyeFFO_rHkXPPhs3TRBcXGXNVNvVa9KWVfT9C_QurlKo-1VKCkZbRbpKfVhTJsWckxs301CiH3zUn_i3r48-Lir87t_5N-izcRV4uwZSNpvq34_A_wACJKTq</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Giolando, Patrick</creator><creator>Kakaletsis, Sotirios</creator><creator>Zhang, Xuesong</creator><creator>Weickenmeier, Johannes</creator><creator>Castillo, Edward</creator><creator>Dortdivanlioglu, Berkin</creator><creator>Rausch, Manuel K</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7105-1452</orcidid><orcidid>https://orcid.org/0000-0003-1337-6472</orcidid></search><sort><creationdate>20230913</creationdate><title>AI-dente: an open machine learning based tool to interpret nano-indentation data of soft tissues and materials</title><author>Giolando, Patrick ; Kakaletsis, Sotirios ; Zhang, Xuesong ; Weickenmeier, Johannes ; Castillo, Edward ; Dortdivanlioglu, Berkin ; Rausch, Manuel K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-c429dc8dcee5b6f4bb68b53d1fa96245d4458abd8d0e26d6b6c1aae11df13f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Finite element method</topic><topic>Forward problem</topic><topic>Identification methods</topic><topic>Interrogation</topic><topic>Inverse problems</topic><topic>Iterative methods</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Nanoindentation</topic><topic>Nanotechnology</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Parameter identification</topic><topic>Soft tissues</topic><topic>Synthetic data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giolando, Patrick</creatorcontrib><creatorcontrib>Kakaletsis, Sotirios</creatorcontrib><creatorcontrib>Zhang, Xuesong</creatorcontrib><creatorcontrib>Weickenmeier, Johannes</creatorcontrib><creatorcontrib>Castillo, Edward</creatorcontrib><creatorcontrib>Dortdivanlioglu, Berkin</creatorcontrib><creatorcontrib>Rausch, Manuel K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giolando, Patrick</au><au>Kakaletsis, Sotirios</au><au>Zhang, Xuesong</au><au>Weickenmeier, Johannes</au><au>Castillo, Edward</au><au>Dortdivanlioglu, Berkin</au><au>Rausch, Manuel K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-dente: an open machine learning based tool to interpret nano-indentation data of soft tissues and materials</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2023-09-13</date><risdate>2023</risdate><volume>19</volume><issue>35</issue><spage>671</spage><epage>672</epage><pages>671-672</pages><issn>1744-683X</issn><issn>1744-6848</issn><eissn>1744-6848</eissn><abstract>Nano-indentation is a promising method to identify the constitutive parameters of soft materials, including soft tissues. Especially when materials are very small and heterogeneous, nano-indentation allows mechanical interrogation where traditional methods may fail. However, because nano-indentation does not yield a homogeneous deformation field, interpreting the resulting load-displacement curves is non-trivial and most investigators resort to simplified approaches based on the Hertzian solution. Unfortunately, for small samples and large indentation depths, these solutions are inaccurate. We set out to use machine learning to provide an alternative strategy. We first used the finite element method to create a large synthetic data set. We then used these data to train neural networks to inversely identify material parameters from load-displacement curves. To this end, we took two different approaches. First, we learned the indentation forward problem, which we then applied within an iterative framework to identify material parameters. Second, we learned the inverse problem of directly identifying material parameters. We show that both approaches are effective at identifying the parameters of the neo-Hookean and Gent models. Specifically, when applied to synthetic data, our approaches are accurate even for small sample sizes and at deep indentation. Additionally, our approaches are fast, especially compared to the inverse finite element approach. Finally, our approaches worked on unseen experimental data from thin mouse brain samples. Here, our approaches proved robust to experimental noise across over 1000 samples. By providing open access to our data and code, we hope to support others that conduct nano-indentation on soft materials. Machine learning can improve the identification of soft material parameters from nano-indentation experiments.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37622379</pmid><doi>10.1039/d3sm00402c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7105-1452</orcidid><orcidid>https://orcid.org/0000-0003-1337-6472</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2023-09, Vol.19 (35), p.671-672
issn 1744-683X
1744-6848
1744-6848
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10499084
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chemistry
Finite element method
Forward problem
Identification methods
Interrogation
Inverse problems
Iterative methods
Learning algorithms
Machine Learning
Nanoindentation
Nanotechnology
Neural networks
Neural Networks, Computer
Parameter identification
Soft tissues
Synthetic data
title AI-dente: an open machine learning based tool to interpret nano-indentation data of soft tissues and materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-dente:%20an%20open%20machine%20learning%20based%20tool%20to%20interpret%20nano-indentation%20data%20of%20soft%20tissues%20and%20materials&rft.jtitle=Soft%20matter&rft.au=Giolando,%20Patrick&rft.date=2023-09-13&rft.volume=19&rft.issue=35&rft.spage=671&rft.epage=672&rft.pages=671-672&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d3sm00402c&rft_dat=%3Cproquest_pubme%3E2864215807%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864215807&rft_id=info:pmid/37622379&rfr_iscdi=true