Precise transcript targeting by CRISPR-Csm complexes

Robust and precise transcript targeting in mammalian cells remains a difficult challenge using existing approaches due to inefficiency, imprecision and subcellular compartmentalization. Here we show that the clustered regularly interspaced short palindromic repeats (CRISPR)-Csm complex, a multiprote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2023-09, Vol.41 (9), p.1256-1264
Hauptverfasser: Colognori, David, Trinidad, Marena, Doudna, Jennifer A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1264
container_issue 9
container_start_page 1256
container_title Nature biotechnology
container_volume 41
creator Colognori, David
Trinidad, Marena
Doudna, Jennifer A.
description Robust and precise transcript targeting in mammalian cells remains a difficult challenge using existing approaches due to inefficiency, imprecision and subcellular compartmentalization. Here we show that the clustered regularly interspaced short palindromic repeats (CRISPR)-Csm complex, a multiprotein effector from type III CRISPR immune systems in prokaryotes, provides surgical RNA ablation of both nuclear and cytoplasmic transcripts. As part of the most widely occurring CRISPR adaptive immune pathway, CRISPR-Csm uses a programmable RNA-guided mechanism to find and degrade target RNA molecules without inducing indiscriminate trans -cleavage of cellular RNAs, giving it an important advantage over the CRISPR-Cas13 family of enzymes. Using single-vector delivery of the Streptococcus thermophilus Csm complex, we observe high-efficiency RNA knockdown (90–99%) and minimal off-target effects in human cells, outperforming existing technologies including short hairpin RNA- and Cas13-mediated knockdown. We also find that catalytically inactivated Csm achieves specific and durable RNA binding, a property we harness for live-cell RNA imaging. These results establish the feasibility and efficacy of multiprotein CRISPR-Cas effector complexes as RNA-targeting tools in eukaryotes. The bacterial Csm complex efficiently knocks down eukaryotic nuclear and cytoplasmic RNAs.
doi_str_mv 10.1038/s41587-022-01649-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10497410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864014395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-e6503592aab4089ad8433f47fb2c5d5bdd7f583967e1f7c16aca6c28b0be6f333</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EouXCH2CBItiwCfg5jleouuJRqRJVgbXlOJNbV4l9sXMR_fe4pJTHgpUtzTdnzswh5CmjrxgV3esimep0SzlvKQNpWnOPHDMloWVg4H7905syU3BEHpVyRSkFCfCQHAkAQzXwYyLPM_pQsFmyi8XnsF-axeUdLiHumv662V6cfjq_aLdlbnya9xN-x_KYPBjdVPDJ7bshX969_bz90J59fH-6PTlrvaJ8aREUFcpw53pJO-OGTgoxSj323KtB9cOgR9UJAxrZqD0D5x143vW0RxiFEBvyZtXdH_oZB4-xupzsPofZ5WubXLB_V2K4tLv0zTIqjZb1SBvyfFVIZQm2-LCgv_QpRvSL5VJTw7sKvbwdk9PXA5bFzqF4nCYXMR2K5RqMqHLV_oa8-Ae9Socc6xEs70BSJoVRleIr5XMqJeN4Z5lRexOdXaOzNTr7MzpratOzP5e9a_mVVQXECpRaijvMv2f_R_YH8ryjNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864014395</pqid></control><display><type>article</type><title>Precise transcript targeting by CRISPR-Csm complexes</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Colognori, David ; Trinidad, Marena ; Doudna, Jennifer A.</creator><creatorcontrib>Colognori, David ; Trinidad, Marena ; Doudna, Jennifer A. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Robust and precise transcript targeting in mammalian cells remains a difficult challenge using existing approaches due to inefficiency, imprecision and subcellular compartmentalization. Here we show that the clustered regularly interspaced short palindromic repeats (CRISPR)-Csm complex, a multiprotein effector from type III CRISPR immune systems in prokaryotes, provides surgical RNA ablation of both nuclear and cytoplasmic transcripts. As part of the most widely occurring CRISPR adaptive immune pathway, CRISPR-Csm uses a programmable RNA-guided mechanism to find and degrade target RNA molecules without inducing indiscriminate trans -cleavage of cellular RNAs, giving it an important advantage over the CRISPR-Cas13 family of enzymes. Using single-vector delivery of the Streptococcus thermophilus Csm complex, we observe high-efficiency RNA knockdown (90–99%) and minimal off-target effects in human cells, outperforming existing technologies including short hairpin RNA- and Cas13-mediated knockdown. We also find that catalytically inactivated Csm achieves specific and durable RNA binding, a property we harness for live-cell RNA imaging. These results establish the feasibility and efficacy of multiprotein CRISPR-Cas effector complexes as RNA-targeting tools in eukaryotes. The bacterial Csm complex efficiently knocks down eukaryotic nuclear and cytoplasmic RNAs.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-022-01649-9</identifier><identifier>PMID: 36690762</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/61/185 ; 631/61/191 ; Ablation ; Agriculture ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Biotechnology &amp; Applied Microbiology ; CRISPR ; Eukaryotes ; Immune system ; Life Sciences ; Mammalian cells ; Prokaryotes ; Ribonucleic acid ; RNA</subject><ispartof>Nature biotechnology, 2023-09, Vol.41 (9), p.1256-1264</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-e6503592aab4089ad8433f47fb2c5d5bdd7f583967e1f7c16aca6c28b0be6f333</citedby><cites>FETCH-LOGICAL-c502t-e6503592aab4089ad8433f47fb2c5d5bdd7f583967e1f7c16aca6c28b0be6f333</cites><orcidid>0000-0001-6995-7079 ; 0000-0001-9161-999X ; 000000019161999X ; 0000000169957079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36690762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2470928$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Colognori, David</creatorcontrib><creatorcontrib>Trinidad, Marena</creatorcontrib><creatorcontrib>Doudna, Jennifer A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Precise transcript targeting by CRISPR-Csm complexes</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Robust and precise transcript targeting in mammalian cells remains a difficult challenge using existing approaches due to inefficiency, imprecision and subcellular compartmentalization. Here we show that the clustered regularly interspaced short palindromic repeats (CRISPR)-Csm complex, a multiprotein effector from type III CRISPR immune systems in prokaryotes, provides surgical RNA ablation of both nuclear and cytoplasmic transcripts. As part of the most widely occurring CRISPR adaptive immune pathway, CRISPR-Csm uses a programmable RNA-guided mechanism to find and degrade target RNA molecules without inducing indiscriminate trans -cleavage of cellular RNAs, giving it an important advantage over the CRISPR-Cas13 family of enzymes. Using single-vector delivery of the Streptococcus thermophilus Csm complex, we observe high-efficiency RNA knockdown (90–99%) and minimal off-target effects in human cells, outperforming existing technologies including short hairpin RNA- and Cas13-mediated knockdown. We also find that catalytically inactivated Csm achieves specific and durable RNA binding, a property we harness for live-cell RNA imaging. These results establish the feasibility and efficacy of multiprotein CRISPR-Cas effector complexes as RNA-targeting tools in eukaryotes. The bacterial Csm complex efficiently knocks down eukaryotic nuclear and cytoplasmic RNAs.</description><subject>631/61/185</subject><subject>631/61/191</subject><subject>Ablation</subject><subject>Agriculture</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Biotechnology &amp; Applied Microbiology</subject><subject>CRISPR</subject><subject>Eukaryotes</subject><subject>Immune system</subject><subject>Life Sciences</subject><subject>Mammalian cells</subject><subject>Prokaryotes</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtv1TAQhS0EouXCH2CBItiwCfg5jleouuJRqRJVgbXlOJNbV4l9sXMR_fe4pJTHgpUtzTdnzswh5CmjrxgV3esimep0SzlvKQNpWnOPHDMloWVg4H7905syU3BEHpVyRSkFCfCQHAkAQzXwYyLPM_pQsFmyi8XnsF-axeUdLiHumv662V6cfjq_aLdlbnya9xN-x_KYPBjdVPDJ7bshX969_bz90J59fH-6PTlrvaJ8aREUFcpw53pJO-OGTgoxSj323KtB9cOgR9UJAxrZqD0D5x143vW0RxiFEBvyZtXdH_oZB4-xupzsPofZ5WubXLB_V2K4tLv0zTIqjZb1SBvyfFVIZQm2-LCgv_QpRvSL5VJTw7sKvbwdk9PXA5bFzqF4nCYXMR2K5RqMqHLV_oa8-Ae9Socc6xEs70BSJoVRleIr5XMqJeN4Z5lRexOdXaOzNTr7MzpratOzP5e9a_mVVQXECpRaijvMv2f_R_YH8ryjNg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Colognori, David</creator><creator>Trinidad, Marena</creator><creator>Doudna, Jennifer A.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><general>Springer Nature</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6995-7079</orcidid><orcidid>https://orcid.org/0000-0001-9161-999X</orcidid><orcidid>https://orcid.org/000000019161999X</orcidid><orcidid>https://orcid.org/0000000169957079</orcidid></search><sort><creationdate>20230901</creationdate><title>Precise transcript targeting by CRISPR-Csm complexes</title><author>Colognori, David ; Trinidad, Marena ; Doudna, Jennifer A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-e6503592aab4089ad8433f47fb2c5d5bdd7f583967e1f7c16aca6c28b0be6f333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/61/185</topic><topic>631/61/191</topic><topic>Ablation</topic><topic>Agriculture</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Biotechnology &amp; Applied Microbiology</topic><topic>CRISPR</topic><topic>Eukaryotes</topic><topic>Immune system</topic><topic>Life Sciences</topic><topic>Mammalian cells</topic><topic>Prokaryotes</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colognori, David</creatorcontrib><creatorcontrib>Trinidad, Marena</creatorcontrib><creatorcontrib>Doudna, Jennifer A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colognori, David</au><au>Trinidad, Marena</au><au>Doudna, Jennifer A.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise transcript targeting by CRISPR-Csm complexes</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>41</volume><issue>9</issue><spage>1256</spage><epage>1264</epage><pages>1256-1264</pages><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>Robust and precise transcript targeting in mammalian cells remains a difficult challenge using existing approaches due to inefficiency, imprecision and subcellular compartmentalization. Here we show that the clustered regularly interspaced short palindromic repeats (CRISPR)-Csm complex, a multiprotein effector from type III CRISPR immune systems in prokaryotes, provides surgical RNA ablation of both nuclear and cytoplasmic transcripts. As part of the most widely occurring CRISPR adaptive immune pathway, CRISPR-Csm uses a programmable RNA-guided mechanism to find and degrade target RNA molecules without inducing indiscriminate trans -cleavage of cellular RNAs, giving it an important advantage over the CRISPR-Cas13 family of enzymes. Using single-vector delivery of the Streptococcus thermophilus Csm complex, we observe high-efficiency RNA knockdown (90–99%) and minimal off-target effects in human cells, outperforming existing technologies including short hairpin RNA- and Cas13-mediated knockdown. We also find that catalytically inactivated Csm achieves specific and durable RNA binding, a property we harness for live-cell RNA imaging. These results establish the feasibility and efficacy of multiprotein CRISPR-Cas effector complexes as RNA-targeting tools in eukaryotes. The bacterial Csm complex efficiently knocks down eukaryotic nuclear and cytoplasmic RNAs.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>36690762</pmid><doi>10.1038/s41587-022-01649-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6995-7079</orcidid><orcidid>https://orcid.org/0000-0001-9161-999X</orcidid><orcidid>https://orcid.org/000000019161999X</orcidid><orcidid>https://orcid.org/0000000169957079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2023-09, Vol.41 (9), p.1256-1264
issn 1087-0156
1546-1696
1546-1696
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10497410
source Nature; Alma/SFX Local Collection
subjects 631/61/185
631/61/191
Ablation
Agriculture
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Biotechnology & Applied Microbiology
CRISPR
Eukaryotes
Immune system
Life Sciences
Mammalian cells
Prokaryotes
Ribonucleic acid
RNA
title Precise transcript targeting by CRISPR-Csm complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20transcript%20targeting%20by%20CRISPR-Csm%20complexes&rft.jtitle=Nature%20biotechnology&rft.au=Colognori,%20David&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2023-09-01&rft.volume=41&rft.issue=9&rft.spage=1256&rft.epage=1264&rft.pages=1256-1264&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-022-01649-9&rft_dat=%3Cproquest_pubme%3E2864014395%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864014395&rft_id=info:pmid/36690762&rfr_iscdi=true