Precise transcript targeting by CRISPR-Csm complexes
Robust and precise transcript targeting in mammalian cells remains a difficult challenge using existing approaches due to inefficiency, imprecision and subcellular compartmentalization. Here we show that the clustered regularly interspaced short palindromic repeats (CRISPR)-Csm complex, a multiprote...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2023-09, Vol.41 (9), p.1256-1264 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1264 |
---|---|
container_issue | 9 |
container_start_page | 1256 |
container_title | Nature biotechnology |
container_volume | 41 |
creator | Colognori, David Trinidad, Marena Doudna, Jennifer A. |
description | Robust and precise transcript targeting in mammalian cells remains a difficult challenge using existing approaches due to inefficiency, imprecision and subcellular compartmentalization. Here we show that the clustered regularly interspaced short palindromic repeats (CRISPR)-Csm complex, a multiprotein effector from type III CRISPR immune systems in prokaryotes, provides surgical RNA ablation of both nuclear and cytoplasmic transcripts. As part of the most widely occurring CRISPR adaptive immune pathway, CRISPR-Csm uses a programmable RNA-guided mechanism to find and degrade target RNA molecules without inducing indiscriminate
trans
-cleavage of cellular RNAs, giving it an important advantage over the CRISPR-Cas13 family of enzymes. Using single-vector delivery of the
Streptococcus thermophilus
Csm complex, we observe high-efficiency RNA knockdown (90–99%) and minimal off-target effects in human cells, outperforming existing technologies including short hairpin RNA- and Cas13-mediated knockdown. We also find that catalytically inactivated Csm achieves specific and durable RNA binding, a property we harness for live-cell RNA imaging. These results establish the feasibility and efficacy of multiprotein CRISPR-Cas effector complexes as RNA-targeting tools in eukaryotes.
The bacterial Csm complex efficiently knocks down eukaryotic nuclear and cytoplasmic RNAs. |
doi_str_mv | 10.1038/s41587-022-01649-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10497410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864014395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-e6503592aab4089ad8433f47fb2c5d5bdd7f583967e1f7c16aca6c28b0be6f333</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS0EouXCH2CBItiwCfg5jleouuJRqRJVgbXlOJNbV4l9sXMR_fe4pJTHgpUtzTdnzswh5CmjrxgV3esimep0SzlvKQNpWnOPHDMloWVg4H7905syU3BEHpVyRSkFCfCQHAkAQzXwYyLPM_pQsFmyi8XnsF-axeUdLiHumv662V6cfjq_aLdlbnya9xN-x_KYPBjdVPDJ7bshX969_bz90J59fH-6PTlrvaJ8aREUFcpw53pJO-OGTgoxSj323KtB9cOgR9UJAxrZqD0D5x143vW0RxiFEBvyZtXdH_oZB4-xupzsPofZ5WubXLB_V2K4tLv0zTIqjZb1SBvyfFVIZQm2-LCgv_QpRvSL5VJTw7sKvbwdk9PXA5bFzqF4nCYXMR2K5RqMqHLV_oa8-Ae9Socc6xEs70BSJoVRleIr5XMqJeN4Z5lRexOdXaOzNTr7MzpratOzP5e9a_mVVQXECpRaijvMv2f_R_YH8ryjNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864014395</pqid></control><display><type>article</type><title>Precise transcript targeting by CRISPR-Csm complexes</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Colognori, David ; Trinidad, Marena ; Doudna, Jennifer A.</creator><creatorcontrib>Colognori, David ; Trinidad, Marena ; Doudna, Jennifer A. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Robust and precise transcript targeting in mammalian cells remains a difficult challenge using existing approaches due to inefficiency, imprecision and subcellular compartmentalization. Here we show that the clustered regularly interspaced short palindromic repeats (CRISPR)-Csm complex, a multiprotein effector from type III CRISPR immune systems in prokaryotes, provides surgical RNA ablation of both nuclear and cytoplasmic transcripts. As part of the most widely occurring CRISPR adaptive immune pathway, CRISPR-Csm uses a programmable RNA-guided mechanism to find and degrade target RNA molecules without inducing indiscriminate
trans
-cleavage of cellular RNAs, giving it an important advantage over the CRISPR-Cas13 family of enzymes. Using single-vector delivery of the
Streptococcus thermophilus
Csm complex, we observe high-efficiency RNA knockdown (90–99%) and minimal off-target effects in human cells, outperforming existing technologies including short hairpin RNA- and Cas13-mediated knockdown. We also find that catalytically inactivated Csm achieves specific and durable RNA binding, a property we harness for live-cell RNA imaging. These results establish the feasibility and efficacy of multiprotein CRISPR-Cas effector complexes as RNA-targeting tools in eukaryotes.
The bacterial Csm complex efficiently knocks down eukaryotic nuclear and cytoplasmic RNAs.</description><identifier>ISSN: 1087-0156</identifier><identifier>ISSN: 1546-1696</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-022-01649-9</identifier><identifier>PMID: 36690762</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/61/185 ; 631/61/191 ; Ablation ; Agriculture ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Biotechnology & Applied Microbiology ; CRISPR ; Eukaryotes ; Immune system ; Life Sciences ; Mammalian cells ; Prokaryotes ; Ribonucleic acid ; RNA</subject><ispartof>Nature biotechnology, 2023-09, Vol.41 (9), p.1256-1264</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-e6503592aab4089ad8433f47fb2c5d5bdd7f583967e1f7c16aca6c28b0be6f333</citedby><cites>FETCH-LOGICAL-c502t-e6503592aab4089ad8433f47fb2c5d5bdd7f583967e1f7c16aca6c28b0be6f333</cites><orcidid>0000-0001-6995-7079 ; 0000-0001-9161-999X ; 000000019161999X ; 0000000169957079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36690762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2470928$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Colognori, David</creatorcontrib><creatorcontrib>Trinidad, Marena</creatorcontrib><creatorcontrib>Doudna, Jennifer A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Precise transcript targeting by CRISPR-Csm complexes</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Robust and precise transcript targeting in mammalian cells remains a difficult challenge using existing approaches due to inefficiency, imprecision and subcellular compartmentalization. Here we show that the clustered regularly interspaced short palindromic repeats (CRISPR)-Csm complex, a multiprotein effector from type III CRISPR immune systems in prokaryotes, provides surgical RNA ablation of both nuclear and cytoplasmic transcripts. As part of the most widely occurring CRISPR adaptive immune pathway, CRISPR-Csm uses a programmable RNA-guided mechanism to find and degrade target RNA molecules without inducing indiscriminate
trans
-cleavage of cellular RNAs, giving it an important advantage over the CRISPR-Cas13 family of enzymes. Using single-vector delivery of the
Streptococcus thermophilus
Csm complex, we observe high-efficiency RNA knockdown (90–99%) and minimal off-target effects in human cells, outperforming existing technologies including short hairpin RNA- and Cas13-mediated knockdown. We also find that catalytically inactivated Csm achieves specific and durable RNA binding, a property we harness for live-cell RNA imaging. These results establish the feasibility and efficacy of multiprotein CRISPR-Cas effector complexes as RNA-targeting tools in eukaryotes.
The bacterial Csm complex efficiently knocks down eukaryotic nuclear and cytoplasmic RNAs.</description><subject>631/61/185</subject><subject>631/61/191</subject><subject>Ablation</subject><subject>Agriculture</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Biotechnology & Applied Microbiology</subject><subject>CRISPR</subject><subject>Eukaryotes</subject><subject>Immune system</subject><subject>Life Sciences</subject><subject>Mammalian cells</subject><subject>Prokaryotes</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><issn>1087-0156</issn><issn>1546-1696</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtv1TAQhS0EouXCH2CBItiwCfg5jleouuJRqRJVgbXlOJNbV4l9sXMR_fe4pJTHgpUtzTdnzswh5CmjrxgV3esimep0SzlvKQNpWnOPHDMloWVg4H7905syU3BEHpVyRSkFCfCQHAkAQzXwYyLPM_pQsFmyi8XnsF-axeUdLiHumv662V6cfjq_aLdlbnya9xN-x_KYPBjdVPDJ7bshX969_bz90J59fH-6PTlrvaJ8aREUFcpw53pJO-OGTgoxSj323KtB9cOgR9UJAxrZqD0D5x143vW0RxiFEBvyZtXdH_oZB4-xupzsPofZ5WubXLB_V2K4tLv0zTIqjZb1SBvyfFVIZQm2-LCgv_QpRvSL5VJTw7sKvbwdk9PXA5bFzqF4nCYXMR2K5RqMqHLV_oa8-Ae9Socc6xEs70BSJoVRleIr5XMqJeN4Z5lRexOdXaOzNTr7MzpratOzP5e9a_mVVQXECpRaijvMv2f_R_YH8ryjNg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Colognori, David</creator><creator>Trinidad, Marena</creator><creator>Doudna, Jennifer A.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><general>Springer Nature</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6995-7079</orcidid><orcidid>https://orcid.org/0000-0001-9161-999X</orcidid><orcidid>https://orcid.org/000000019161999X</orcidid><orcidid>https://orcid.org/0000000169957079</orcidid></search><sort><creationdate>20230901</creationdate><title>Precise transcript targeting by CRISPR-Csm complexes</title><author>Colognori, David ; Trinidad, Marena ; Doudna, Jennifer A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-e6503592aab4089ad8433f47fb2c5d5bdd7f583967e1f7c16aca6c28b0be6f333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/61/185</topic><topic>631/61/191</topic><topic>Ablation</topic><topic>Agriculture</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Biotechnology & Applied Microbiology</topic><topic>CRISPR</topic><topic>Eukaryotes</topic><topic>Immune system</topic><topic>Life Sciences</topic><topic>Mammalian cells</topic><topic>Prokaryotes</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colognori, David</creatorcontrib><creatorcontrib>Trinidad, Marena</creatorcontrib><creatorcontrib>Doudna, Jennifer A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colognori, David</au><au>Trinidad, Marena</au><au>Doudna, Jennifer A.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise transcript targeting by CRISPR-Csm complexes</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>41</volume><issue>9</issue><spage>1256</spage><epage>1264</epage><pages>1256-1264</pages><issn>1087-0156</issn><issn>1546-1696</issn><eissn>1546-1696</eissn><abstract>Robust and precise transcript targeting in mammalian cells remains a difficult challenge using existing approaches due to inefficiency, imprecision and subcellular compartmentalization. Here we show that the clustered regularly interspaced short palindromic repeats (CRISPR)-Csm complex, a multiprotein effector from type III CRISPR immune systems in prokaryotes, provides surgical RNA ablation of both nuclear and cytoplasmic transcripts. As part of the most widely occurring CRISPR adaptive immune pathway, CRISPR-Csm uses a programmable RNA-guided mechanism to find and degrade target RNA molecules without inducing indiscriminate
trans
-cleavage of cellular RNAs, giving it an important advantage over the CRISPR-Cas13 family of enzymes. Using single-vector delivery of the
Streptococcus thermophilus
Csm complex, we observe high-efficiency RNA knockdown (90–99%) and minimal off-target effects in human cells, outperforming existing technologies including short hairpin RNA- and Cas13-mediated knockdown. We also find that catalytically inactivated Csm achieves specific and durable RNA binding, a property we harness for live-cell RNA imaging. These results establish the feasibility and efficacy of multiprotein CRISPR-Cas effector complexes as RNA-targeting tools in eukaryotes.
The bacterial Csm complex efficiently knocks down eukaryotic nuclear and cytoplasmic RNAs.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>36690762</pmid><doi>10.1038/s41587-022-01649-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6995-7079</orcidid><orcidid>https://orcid.org/0000-0001-9161-999X</orcidid><orcidid>https://orcid.org/000000019161999X</orcidid><orcidid>https://orcid.org/0000000169957079</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2023-09, Vol.41 (9), p.1256-1264 |
issn | 1087-0156 1546-1696 1546-1696 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10497410 |
source | Nature; Alma/SFX Local Collection |
subjects | 631/61/185 631/61/191 Ablation Agriculture Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Biotechnology & Applied Microbiology CRISPR Eukaryotes Immune system Life Sciences Mammalian cells Prokaryotes Ribonucleic acid RNA |
title | Precise transcript targeting by CRISPR-Csm complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20transcript%20targeting%20by%20CRISPR-Csm%20complexes&rft.jtitle=Nature%20biotechnology&rft.au=Colognori,%20David&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2023-09-01&rft.volume=41&rft.issue=9&rft.spage=1256&rft.epage=1264&rft.pages=1256-1264&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-022-01649-9&rft_dat=%3Cproquest_pubme%3E2864014395%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864014395&rft_id=info:pmid/36690762&rfr_iscdi=true |