Influence of Manganese Content on Martensitic Transformation of Cu-Al-Mn-Ag Alloy
The influence of manganese content on the formation of martensite structure and the final properties of a quaternary Cu-Al-Mn-Ag shape memory alloy (SMA) was investigated. Two alloys with designed compositions, Cu- 9%wt. Al- 16%wt. Mn- 2%wt. Ag and Cu- 9%wt. Al- 7%wt. Mn- 2%wt. Ag, were prepared in...
Gespeichert in:
Veröffentlicht in: | Materials 2023-08, Vol.16 (17), p.5782 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | 5782 |
container_title | Materials |
container_volume | 16 |
creator | Liverić, Lovro Holjevac Grgurić, Tamara Mandić, Vilko Chulist, Robert |
description | The influence of manganese content on the formation of martensite structure and the final properties of a quaternary Cu-Al-Mn-Ag shape memory alloy (SMA) was investigated. Two alloys with designed compositions, Cu- 9%wt. Al- 16%wt. Mn- 2%wt. Ag and Cu- 9%wt. Al- 7%wt. Mn- 2%wt. Ag, were prepared in an electric arc furnace by melting of high-purity metals. As-cast and quenched microstructures were determined by optical microscopy and scanning electron microscopy equipped with EDS. Phases were confirmed by high-energy synchrotron radiation and electron backscatter diffractions. Austenite and martensite transformations were followed by differential scanning calorimetry and hardness was determined using the Vickers hardness test. It was found that the addition of silver contributes to the formation of the martensite structure in the Cu-Al-Mn-SMA. In the alloy with 7%wt. of manganese, stable martensite is formed even in the as-cast state without additional heat treatment, while the alloy with 16%wt. of manganese martensite transforms only after thermal stabilization and quenching. Two types of martensite, β1′ and γ1′, are confirmed in the Cu-9Al-7Mn-2Ag specimen. The as-cast SMA with 7%wt. Mn showed significantly lower martensite transformation temperatures, Ms and Mf, in relation to the quenched alloy. With increasing manganese content, the Ms and Mf temperatures are shifted to higher values and the microhardness is lower. |
doi_str_mv | 10.3390/ma16175782 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10488815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764266975</galeid><sourcerecordid>A764266975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-697a000b90c7162f019464acde8335b0e837381af0a51efcfc7fda63334258f33</originalsourceid><addsrcrecordid>eNpdUU1LBDEMLaKoqBd_wYAXEUbbaaftnGRY_AJFBD2XbrddK51W2xnBf2-WFb-aQ0Ly8vLSIHRI8CmlHT4bNOFEtEI2G2iXdB2vScfY5q94Bx2U8oLhUUpk022jHSq4FEzIXfRwE12YbDS2Sq6603Gpoy22mqU42jhWKUIyQ1j86E31mHUsLuVBjx5K0DKb6j7Ud7Hul1UfQvrYR1tOh2IPvvweerq8eJxd17f3Vzez_rY2rKFjzTuhQdK8w0YQ3jgMUjnTZmElpe0cgxNUEu2wbol1xhnhFppTSlnTSkfpHjpf875O88EuDKjNOqjX7AedP1TSXv2tRP-sluldEcyklKQFhuMvhpzeJltGNfhibAjwBWkqqpEwDrOOYYAe_YO-pClH2G-FagSRAktAna5RSx2s8tElGGzAFnbwJkXrPOR7wVnDYf-VgpN1g8mplGzdt3yC1eq86ue89BPZBZRI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862718708</pqid></control><display><type>article</type><title>Influence of Manganese Content on Martensitic Transformation of Cu-Al-Mn-Ag Alloy</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Liverić, Lovro ; Holjevac Grgurić, Tamara ; Mandić, Vilko ; Chulist, Robert</creator><creatorcontrib>Liverić, Lovro ; Holjevac Grgurić, Tamara ; Mandić, Vilko ; Chulist, Robert</creatorcontrib><description>The influence of manganese content on the formation of martensite structure and the final properties of a quaternary Cu-Al-Mn-Ag shape memory alloy (SMA) was investigated. Two alloys with designed compositions, Cu- 9%wt. Al- 16%wt. Mn- 2%wt. Ag and Cu- 9%wt. Al- 7%wt. Mn- 2%wt. Ag, were prepared in an electric arc furnace by melting of high-purity metals. As-cast and quenched microstructures were determined by optical microscopy and scanning electron microscopy equipped with EDS. Phases were confirmed by high-energy synchrotron radiation and electron backscatter diffractions. Austenite and martensite transformations were followed by differential scanning calorimetry and hardness was determined using the Vickers hardness test. It was found that the addition of silver contributes to the formation of the martensite structure in the Cu-Al-Mn-SMA. In the alloy with 7%wt. of manganese, stable martensite is formed even in the as-cast state without additional heat treatment, while the alloy with 16%wt. of manganese martensite transforms only after thermal stabilization and quenching. Two types of martensite, β1′ and γ1′, are confirmed in the Cu-9Al-7Mn-2Ag specimen. The as-cast SMA with 7%wt. Mn showed significantly lower martensite transformation temperatures, Ms and Mf, in relation to the quenched alloy. With increasing manganese content, the Ms and Mf temperatures are shifted to higher values and the microhardness is lower.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16175782</identifier><identifier>PMID: 37687478</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloys ; Aluminum ; Aluminum base alloys ; Cold ; Copper ; Copper base alloys ; Decomposition ; Diamond pyramid hardness tests ; Ductility ; Electric arc furnaces ; Electron back scatter ; Grain size ; Heat treating ; Heat treatment ; Manganese ; Martensite ; Martensitic transformations ; Morphology ; Optical microscopy ; Quenching ; Shape memory alloys ; Silver ; Synchrotron radiation ; Synchrotrons ; Temperature ; Transformation temperature</subject><ispartof>Materials, 2023-08, Vol.16 (17), p.5782</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-697a000b90c7162f019464acde8335b0e837381af0a51efcfc7fda63334258f33</citedby><cites>FETCH-LOGICAL-c423t-697a000b90c7162f019464acde8335b0e837381af0a51efcfc7fda63334258f33</cites><orcidid>0000-0002-1036-0603 ; 0000-0001-6680-9636 ; 0000-0001-8714-6771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488815/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488815/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Liverić, Lovro</creatorcontrib><creatorcontrib>Holjevac Grgurić, Tamara</creatorcontrib><creatorcontrib>Mandić, Vilko</creatorcontrib><creatorcontrib>Chulist, Robert</creatorcontrib><title>Influence of Manganese Content on Martensitic Transformation of Cu-Al-Mn-Ag Alloy</title><title>Materials</title><description>The influence of manganese content on the formation of martensite structure and the final properties of a quaternary Cu-Al-Mn-Ag shape memory alloy (SMA) was investigated. Two alloys with designed compositions, Cu- 9%wt. Al- 16%wt. Mn- 2%wt. Ag and Cu- 9%wt. Al- 7%wt. Mn- 2%wt. Ag, were prepared in an electric arc furnace by melting of high-purity metals. As-cast and quenched microstructures were determined by optical microscopy and scanning electron microscopy equipped with EDS. Phases were confirmed by high-energy synchrotron radiation and electron backscatter diffractions. Austenite and martensite transformations were followed by differential scanning calorimetry and hardness was determined using the Vickers hardness test. It was found that the addition of silver contributes to the formation of the martensite structure in the Cu-Al-Mn-SMA. In the alloy with 7%wt. of manganese, stable martensite is formed even in the as-cast state without additional heat treatment, while the alloy with 16%wt. of manganese martensite transforms only after thermal stabilization and quenching. Two types of martensite, β1′ and γ1′, are confirmed in the Cu-9Al-7Mn-2Ag specimen. The as-cast SMA with 7%wt. Mn showed significantly lower martensite transformation temperatures, Ms and Mf, in relation to the quenched alloy. With increasing manganese content, the Ms and Mf temperatures are shifted to higher values and the microhardness is lower.</description><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Cold</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Decomposition</subject><subject>Diamond pyramid hardness tests</subject><subject>Ductility</subject><subject>Electric arc furnaces</subject><subject>Electron back scatter</subject><subject>Grain size</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Manganese</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Morphology</subject><subject>Optical microscopy</subject><subject>Quenching</subject><subject>Shape memory alloys</subject><subject>Silver</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Temperature</subject><subject>Transformation temperature</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUU1LBDEMLaKoqBd_wYAXEUbbaaftnGRY_AJFBD2XbrddK51W2xnBf2-WFb-aQ0Ly8vLSIHRI8CmlHT4bNOFEtEI2G2iXdB2vScfY5q94Bx2U8oLhUUpk022jHSq4FEzIXfRwE12YbDS2Sq6603Gpoy22mqU42jhWKUIyQ1j86E31mHUsLuVBjx5K0DKb6j7Ud7Hul1UfQvrYR1tOh2IPvvweerq8eJxd17f3Vzez_rY2rKFjzTuhQdK8w0YQ3jgMUjnTZmElpe0cgxNUEu2wbol1xhnhFppTSlnTSkfpHjpf875O88EuDKjNOqjX7AedP1TSXv2tRP-sluldEcyklKQFhuMvhpzeJltGNfhibAjwBWkqqpEwDrOOYYAe_YO-pClH2G-FagSRAktAna5RSx2s8tElGGzAFnbwJkXrPOR7wVnDYf-VgpN1g8mplGzdt3yC1eq86ue89BPZBZRI</recordid><startdate>20230824</startdate><enddate>20230824</enddate><creator>Liverić, Lovro</creator><creator>Holjevac Grgurić, Tamara</creator><creator>Mandić, Vilko</creator><creator>Chulist, Robert</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1036-0603</orcidid><orcidid>https://orcid.org/0000-0001-6680-9636</orcidid><orcidid>https://orcid.org/0000-0001-8714-6771</orcidid></search><sort><creationdate>20230824</creationdate><title>Influence of Manganese Content on Martensitic Transformation of Cu-Al-Mn-Ag Alloy</title><author>Liverić, Lovro ; Holjevac Grgurić, Tamara ; Mandić, Vilko ; Chulist, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-697a000b90c7162f019464acde8335b0e837381af0a51efcfc7fda63334258f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Cold</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Decomposition</topic><topic>Diamond pyramid hardness tests</topic><topic>Ductility</topic><topic>Electric arc furnaces</topic><topic>Electron back scatter</topic><topic>Grain size</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Manganese</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Morphology</topic><topic>Optical microscopy</topic><topic>Quenching</topic><topic>Shape memory alloys</topic><topic>Silver</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Temperature</topic><topic>Transformation temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liverić, Lovro</creatorcontrib><creatorcontrib>Holjevac Grgurić, Tamara</creatorcontrib><creatorcontrib>Mandić, Vilko</creatorcontrib><creatorcontrib>Chulist, Robert</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liverić, Lovro</au><au>Holjevac Grgurić, Tamara</au><au>Mandić, Vilko</au><au>Chulist, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Manganese Content on Martensitic Transformation of Cu-Al-Mn-Ag Alloy</atitle><jtitle>Materials</jtitle><date>2023-08-24</date><risdate>2023</risdate><volume>16</volume><issue>17</issue><spage>5782</spage><pages>5782-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The influence of manganese content on the formation of martensite structure and the final properties of a quaternary Cu-Al-Mn-Ag shape memory alloy (SMA) was investigated. Two alloys with designed compositions, Cu- 9%wt. Al- 16%wt. Mn- 2%wt. Ag and Cu- 9%wt. Al- 7%wt. Mn- 2%wt. Ag, were prepared in an electric arc furnace by melting of high-purity metals. As-cast and quenched microstructures were determined by optical microscopy and scanning electron microscopy equipped with EDS. Phases were confirmed by high-energy synchrotron radiation and electron backscatter diffractions. Austenite and martensite transformations were followed by differential scanning calorimetry and hardness was determined using the Vickers hardness test. It was found that the addition of silver contributes to the formation of the martensite structure in the Cu-Al-Mn-SMA. In the alloy with 7%wt. of manganese, stable martensite is formed even in the as-cast state without additional heat treatment, while the alloy with 16%wt. of manganese martensite transforms only after thermal stabilization and quenching. Two types of martensite, β1′ and γ1′, are confirmed in the Cu-9Al-7Mn-2Ag specimen. The as-cast SMA with 7%wt. Mn showed significantly lower martensite transformation temperatures, Ms and Mf, in relation to the quenched alloy. With increasing manganese content, the Ms and Mf temperatures are shifted to higher values and the microhardness is lower.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37687478</pmid><doi>10.3390/ma16175782</doi><orcidid>https://orcid.org/0000-0002-1036-0603</orcidid><orcidid>https://orcid.org/0000-0001-6680-9636</orcidid><orcidid>https://orcid.org/0000-0001-8714-6771</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-08, Vol.16 (17), p.5782 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10488815 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Alloys Aluminum Aluminum base alloys Cold Copper Copper base alloys Decomposition Diamond pyramid hardness tests Ductility Electric arc furnaces Electron back scatter Grain size Heat treating Heat treatment Manganese Martensite Martensitic transformations Morphology Optical microscopy Quenching Shape memory alloys Silver Synchrotron radiation Synchrotrons Temperature Transformation temperature |
title | Influence of Manganese Content on Martensitic Transformation of Cu-Al-Mn-Ag Alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A53%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Manganese%20Content%20on%20Martensitic%20Transformation%20of%20Cu-Al-Mn-Ag%20Alloy&rft.jtitle=Materials&rft.au=Liveri%C4%87,%20Lovro&rft.date=2023-08-24&rft.volume=16&rft.issue=17&rft.spage=5782&rft.pages=5782-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16175782&rft_dat=%3Cgale_pubme%3EA764266975%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862718708&rft_id=info:pmid/37687478&rft_galeid=A764266975&rfr_iscdi=true |