Influence of Manganese Content on Martensitic Transformation of Cu-Al-Mn-Ag Alloy

The influence of manganese content on the formation of martensite structure and the final properties of a quaternary Cu-Al-Mn-Ag shape memory alloy (SMA) was investigated. Two alloys with designed compositions, Cu- 9%wt. Al- 16%wt. Mn- 2%wt. Ag and Cu- 9%wt. Al- 7%wt. Mn- 2%wt. Ag, were prepared in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-08, Vol.16 (17), p.5782
Hauptverfasser: Liverić, Lovro, Holjevac Grgurić, Tamara, Mandić, Vilko, Chulist, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 5782
container_title Materials
container_volume 16
creator Liverić, Lovro
Holjevac Grgurić, Tamara
Mandić, Vilko
Chulist, Robert
description The influence of manganese content on the formation of martensite structure and the final properties of a quaternary Cu-Al-Mn-Ag shape memory alloy (SMA) was investigated. Two alloys with designed compositions, Cu- 9%wt. Al- 16%wt. Mn- 2%wt. Ag and Cu- 9%wt. Al- 7%wt. Mn- 2%wt. Ag, were prepared in an electric arc furnace by melting of high-purity metals. As-cast and quenched microstructures were determined by optical microscopy and scanning electron microscopy equipped with EDS. Phases were confirmed by high-energy synchrotron radiation and electron backscatter diffractions. Austenite and martensite transformations were followed by differential scanning calorimetry and hardness was determined using the Vickers hardness test. It was found that the addition of silver contributes to the formation of the martensite structure in the Cu-Al-Mn-SMA. In the alloy with 7%wt. of manganese, stable martensite is formed even in the as-cast state without additional heat treatment, while the alloy with 16%wt. of manganese martensite transforms only after thermal stabilization and quenching. Two types of martensite, β1′ and γ1′, are confirmed in the Cu-9Al-7Mn-2Ag specimen. The as-cast SMA with 7%wt. Mn showed significantly lower martensite transformation temperatures, Ms and Mf, in relation to the quenched alloy. With increasing manganese content, the Ms and Mf temperatures are shifted to higher values and the microhardness is lower.
doi_str_mv 10.3390/ma16175782
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10488815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764266975</galeid><sourcerecordid>A764266975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-697a000b90c7162f019464acde8335b0e837381af0a51efcfc7fda63334258f33</originalsourceid><addsrcrecordid>eNpdUU1LBDEMLaKoqBd_wYAXEUbbaaftnGRY_AJFBD2XbrddK51W2xnBf2-WFb-aQ0Ly8vLSIHRI8CmlHT4bNOFEtEI2G2iXdB2vScfY5q94Bx2U8oLhUUpk022jHSq4FEzIXfRwE12YbDS2Sq6603Gpoy22mqU42jhWKUIyQ1j86E31mHUsLuVBjx5K0DKb6j7Ud7Hul1UfQvrYR1tOh2IPvvweerq8eJxd17f3Vzez_rY2rKFjzTuhQdK8w0YQ3jgMUjnTZmElpe0cgxNUEu2wbol1xhnhFppTSlnTSkfpHjpf875O88EuDKjNOqjX7AedP1TSXv2tRP-sluldEcyklKQFhuMvhpzeJltGNfhibAjwBWkqqpEwDrOOYYAe_YO-pClH2G-FagSRAktAna5RSx2s8tElGGzAFnbwJkXrPOR7wVnDYf-VgpN1g8mplGzdt3yC1eq86ue89BPZBZRI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862718708</pqid></control><display><type>article</type><title>Influence of Manganese Content on Martensitic Transformation of Cu-Al-Mn-Ag Alloy</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Liverić, Lovro ; Holjevac Grgurić, Tamara ; Mandić, Vilko ; Chulist, Robert</creator><creatorcontrib>Liverić, Lovro ; Holjevac Grgurić, Tamara ; Mandić, Vilko ; Chulist, Robert</creatorcontrib><description>The influence of manganese content on the formation of martensite structure and the final properties of a quaternary Cu-Al-Mn-Ag shape memory alloy (SMA) was investigated. Two alloys with designed compositions, Cu- 9%wt. Al- 16%wt. Mn- 2%wt. Ag and Cu- 9%wt. Al- 7%wt. Mn- 2%wt. Ag, were prepared in an electric arc furnace by melting of high-purity metals. As-cast and quenched microstructures were determined by optical microscopy and scanning electron microscopy equipped with EDS. Phases were confirmed by high-energy synchrotron radiation and electron backscatter diffractions. Austenite and martensite transformations were followed by differential scanning calorimetry and hardness was determined using the Vickers hardness test. It was found that the addition of silver contributes to the formation of the martensite structure in the Cu-Al-Mn-SMA. In the alloy with 7%wt. of manganese, stable martensite is formed even in the as-cast state without additional heat treatment, while the alloy with 16%wt. of manganese martensite transforms only after thermal stabilization and quenching. Two types of martensite, β1′ and γ1′, are confirmed in the Cu-9Al-7Mn-2Ag specimen. The as-cast SMA with 7%wt. Mn showed significantly lower martensite transformation temperatures, Ms and Mf, in relation to the quenched alloy. With increasing manganese content, the Ms and Mf temperatures are shifted to higher values and the microhardness is lower.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16175782</identifier><identifier>PMID: 37687478</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloys ; Aluminum ; Aluminum base alloys ; Cold ; Copper ; Copper base alloys ; Decomposition ; Diamond pyramid hardness tests ; Ductility ; Electric arc furnaces ; Electron back scatter ; Grain size ; Heat treating ; Heat treatment ; Manganese ; Martensite ; Martensitic transformations ; Morphology ; Optical microscopy ; Quenching ; Shape memory alloys ; Silver ; Synchrotron radiation ; Synchrotrons ; Temperature ; Transformation temperature</subject><ispartof>Materials, 2023-08, Vol.16 (17), p.5782</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-697a000b90c7162f019464acde8335b0e837381af0a51efcfc7fda63334258f33</citedby><cites>FETCH-LOGICAL-c423t-697a000b90c7162f019464acde8335b0e837381af0a51efcfc7fda63334258f33</cites><orcidid>0000-0002-1036-0603 ; 0000-0001-6680-9636 ; 0000-0001-8714-6771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488815/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488815/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Liverić, Lovro</creatorcontrib><creatorcontrib>Holjevac Grgurić, Tamara</creatorcontrib><creatorcontrib>Mandić, Vilko</creatorcontrib><creatorcontrib>Chulist, Robert</creatorcontrib><title>Influence of Manganese Content on Martensitic Transformation of Cu-Al-Mn-Ag Alloy</title><title>Materials</title><description>The influence of manganese content on the formation of martensite structure and the final properties of a quaternary Cu-Al-Mn-Ag shape memory alloy (SMA) was investigated. Two alloys with designed compositions, Cu- 9%wt. Al- 16%wt. Mn- 2%wt. Ag and Cu- 9%wt. Al- 7%wt. Mn- 2%wt. Ag, were prepared in an electric arc furnace by melting of high-purity metals. As-cast and quenched microstructures were determined by optical microscopy and scanning electron microscopy equipped with EDS. Phases were confirmed by high-energy synchrotron radiation and electron backscatter diffractions. Austenite and martensite transformations were followed by differential scanning calorimetry and hardness was determined using the Vickers hardness test. It was found that the addition of silver contributes to the formation of the martensite structure in the Cu-Al-Mn-SMA. In the alloy with 7%wt. of manganese, stable martensite is formed even in the as-cast state without additional heat treatment, while the alloy with 16%wt. of manganese martensite transforms only after thermal stabilization and quenching. Two types of martensite, β1′ and γ1′, are confirmed in the Cu-9Al-7Mn-2Ag specimen. The as-cast SMA with 7%wt. Mn showed significantly lower martensite transformation temperatures, Ms and Mf, in relation to the quenched alloy. With increasing manganese content, the Ms and Mf temperatures are shifted to higher values and the microhardness is lower.</description><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Cold</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Decomposition</subject><subject>Diamond pyramid hardness tests</subject><subject>Ductility</subject><subject>Electric arc furnaces</subject><subject>Electron back scatter</subject><subject>Grain size</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Manganese</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Morphology</subject><subject>Optical microscopy</subject><subject>Quenching</subject><subject>Shape memory alloys</subject><subject>Silver</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Temperature</subject><subject>Transformation temperature</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUU1LBDEMLaKoqBd_wYAXEUbbaaftnGRY_AJFBD2XbrddK51W2xnBf2-WFb-aQ0Ly8vLSIHRI8CmlHT4bNOFEtEI2G2iXdB2vScfY5q94Bx2U8oLhUUpk022jHSq4FEzIXfRwE12YbDS2Sq6603Gpoy22mqU42jhWKUIyQ1j86E31mHUsLuVBjx5K0DKb6j7Ud7Hul1UfQvrYR1tOh2IPvvweerq8eJxd17f3Vzez_rY2rKFjzTuhQdK8w0YQ3jgMUjnTZmElpe0cgxNUEu2wbol1xhnhFppTSlnTSkfpHjpf875O88EuDKjNOqjX7AedP1TSXv2tRP-sluldEcyklKQFhuMvhpzeJltGNfhibAjwBWkqqpEwDrOOYYAe_YO-pClH2G-FagSRAktAna5RSx2s8tElGGzAFnbwJkXrPOR7wVnDYf-VgpN1g8mplGzdt3yC1eq86ue89BPZBZRI</recordid><startdate>20230824</startdate><enddate>20230824</enddate><creator>Liverić, Lovro</creator><creator>Holjevac Grgurić, Tamara</creator><creator>Mandić, Vilko</creator><creator>Chulist, Robert</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1036-0603</orcidid><orcidid>https://orcid.org/0000-0001-6680-9636</orcidid><orcidid>https://orcid.org/0000-0001-8714-6771</orcidid></search><sort><creationdate>20230824</creationdate><title>Influence of Manganese Content on Martensitic Transformation of Cu-Al-Mn-Ag Alloy</title><author>Liverić, Lovro ; Holjevac Grgurić, Tamara ; Mandić, Vilko ; Chulist, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-697a000b90c7162f019464acde8335b0e837381af0a51efcfc7fda63334258f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Cold</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Decomposition</topic><topic>Diamond pyramid hardness tests</topic><topic>Ductility</topic><topic>Electric arc furnaces</topic><topic>Electron back scatter</topic><topic>Grain size</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Manganese</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Morphology</topic><topic>Optical microscopy</topic><topic>Quenching</topic><topic>Shape memory alloys</topic><topic>Silver</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Temperature</topic><topic>Transformation temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liverić, Lovro</creatorcontrib><creatorcontrib>Holjevac Grgurić, Tamara</creatorcontrib><creatorcontrib>Mandić, Vilko</creatorcontrib><creatorcontrib>Chulist, Robert</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liverić, Lovro</au><au>Holjevac Grgurić, Tamara</au><au>Mandić, Vilko</au><au>Chulist, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Manganese Content on Martensitic Transformation of Cu-Al-Mn-Ag Alloy</atitle><jtitle>Materials</jtitle><date>2023-08-24</date><risdate>2023</risdate><volume>16</volume><issue>17</issue><spage>5782</spage><pages>5782-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The influence of manganese content on the formation of martensite structure and the final properties of a quaternary Cu-Al-Mn-Ag shape memory alloy (SMA) was investigated. Two alloys with designed compositions, Cu- 9%wt. Al- 16%wt. Mn- 2%wt. Ag and Cu- 9%wt. Al- 7%wt. Mn- 2%wt. Ag, were prepared in an electric arc furnace by melting of high-purity metals. As-cast and quenched microstructures were determined by optical microscopy and scanning electron microscopy equipped with EDS. Phases were confirmed by high-energy synchrotron radiation and electron backscatter diffractions. Austenite and martensite transformations were followed by differential scanning calorimetry and hardness was determined using the Vickers hardness test. It was found that the addition of silver contributes to the formation of the martensite structure in the Cu-Al-Mn-SMA. In the alloy with 7%wt. of manganese, stable martensite is formed even in the as-cast state without additional heat treatment, while the alloy with 16%wt. of manganese martensite transforms only after thermal stabilization and quenching. Two types of martensite, β1′ and γ1′, are confirmed in the Cu-9Al-7Mn-2Ag specimen. The as-cast SMA with 7%wt. Mn showed significantly lower martensite transformation temperatures, Ms and Mf, in relation to the quenched alloy. With increasing manganese content, the Ms and Mf temperatures are shifted to higher values and the microhardness is lower.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37687478</pmid><doi>10.3390/ma16175782</doi><orcidid>https://orcid.org/0000-0002-1036-0603</orcidid><orcidid>https://orcid.org/0000-0001-6680-9636</orcidid><orcidid>https://orcid.org/0000-0001-8714-6771</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-08, Vol.16 (17), p.5782
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10488815
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Alloys
Aluminum
Aluminum base alloys
Cold
Copper
Copper base alloys
Decomposition
Diamond pyramid hardness tests
Ductility
Electric arc furnaces
Electron back scatter
Grain size
Heat treating
Heat treatment
Manganese
Martensite
Martensitic transformations
Morphology
Optical microscopy
Quenching
Shape memory alloys
Silver
Synchrotron radiation
Synchrotrons
Temperature
Transformation temperature
title Influence of Manganese Content on Martensitic Transformation of Cu-Al-Mn-Ag Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A53%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Manganese%20Content%20on%20Martensitic%20Transformation%20of%20Cu-Al-Mn-Ag%20Alloy&rft.jtitle=Materials&rft.au=Liveri%C4%87,%20Lovro&rft.date=2023-08-24&rft.volume=16&rft.issue=17&rft.spage=5782&rft.pages=5782-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16175782&rft_dat=%3Cgale_pubme%3EA764266975%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862718708&rft_id=info:pmid/37687478&rft_galeid=A764266975&rfr_iscdi=true