Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy
With the advancement in computational approaches and experimental, simulation, and modeling tools in recent decades, a trial-and-validation method is attracting more attention in the materials community. The development of powder metallurgy Ni-based superalloys is a vivid example that relies on simu...
Gespeichert in:
Veröffentlicht in: | Materials 2023-08, Vol.16 (17), p.5776 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | 5776 |
container_title | Materials |
container_volume | 16 |
creator | Wang, Jingzhe Zhang, Siyu Jiang, Liang Srivatsa, Shesh Huang, Zaiwang |
description | With the advancement in computational approaches and experimental, simulation, and modeling tools in recent decades, a trial-and-validation method is attracting more attention in the materials community. The development of powder metallurgy Ni-based superalloys is a vivid example that relies on simulation and experiments to produce desired microstructure and properties in a tightly controlled manner. In this research, we show an integrated approach to predicting the grain size of industrial forgings starting from lab-scale cylindrical compression by employing modeling and experimental validation. (a) Cylindrical compression tests to obtain accurate flow stress data and the hot working processing window; (b) double-cone tests of laboratory scale validation; (c) sub-scale forgings for further validation under production conditions; and (d) application and validation on full-scale industrial forgings. The procedure uses modeling and simulation to predict metal flow, strain, strain rate, temperature, and the resulting grain size as a function of thermo-mechanical processing conditions. The models are calibrated with experimental data until the accuracy of the modeling predictions is at an acceptable level, which is defined as the accuracy at which the results can be used to design and evaluate industrial forgings. |
doi_str_mv | 10.3390/ma16175776 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10488392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764266913</galeid><sourcerecordid>A764266913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-c1f78c7cc8ff76adf8491d0334c48425a1490eda34878a03d1add557a684fa2e3</originalsourceid><addsrcrecordid>eNpdkV1LHTEQhoO0VLHe9BcseFMKazcfJx9XcnqwWhAVbK_DmEyOsbub02RXOP31jRyprcnFDJNn3nnDEPKBdiecm-7zAFRStVBK7pEDaoxsqRHizT_5Pjkq5aGrh3OqmXlH9rmSWglpDsjyJqOPboppbFJozjPEsbmNv7GpEZqLuL5vVukO-qm5iu4n9u0XKOib23mDGfo-bd-TtwH6gkfP8ZD8-Hr2fXXRXl6ff1stL1vHNZtaR4PSTjmnQ1ASfNDCUF8tCSe0YAugwnTogQutNHTcU_B-sVAgtQjAkB-S053uZr4b0Dscp2rAbnIcIG9tgmj_fxnjvV2nR0s7oTU3rCp8fFbI6deMZbJDLA77HkZMc7FMS847YaSo6PEr9CHNeaz_e6KYokxwU6mTHbWGHm0cQ6qDXb0eh-jSiCHW-lJJwaQ0lNeGT7sGl1MpGcNf-7SzT-u0L-vkfwCcqY68</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862712439</pqid></control><display><type>article</type><title>Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Jingzhe ; Zhang, Siyu ; Jiang, Liang ; Srivatsa, Shesh ; Huang, Zaiwang</creator><creatorcontrib>Wang, Jingzhe ; Zhang, Siyu ; Jiang, Liang ; Srivatsa, Shesh ; Huang, Zaiwang</creatorcontrib><description>With the advancement in computational approaches and experimental, simulation, and modeling tools in recent decades, a trial-and-validation method is attracting more attention in the materials community. The development of powder metallurgy Ni-based superalloys is a vivid example that relies on simulation and experiments to produce desired microstructure and properties in a tightly controlled manner. In this research, we show an integrated approach to predicting the grain size of industrial forgings starting from lab-scale cylindrical compression by employing modeling and experimental validation. (a) Cylindrical compression tests to obtain accurate flow stress data and the hot working processing window; (b) double-cone tests of laboratory scale validation; (c) sub-scale forgings for further validation under production conditions; and (d) application and validation on full-scale industrial forgings. The procedure uses modeling and simulation to predict metal flow, strain, strain rate, temperature, and the resulting grain size as a function of thermo-mechanical processing conditions. The models are calibrated with experimental data until the accuracy of the modeling predictions is at an acceptable level, which is defined as the accuracy at which the results can be used to design and evaluate industrial forgings.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16175776</identifier><identifier>PMID: 37687469</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloys ; Analysis ; Compression tests ; Deformation ; Forgings ; Friction ; Grain size ; Heat resistant alloys ; Hot working ; Integrated approach ; Metal products ; Microstructure ; Model accuracy ; Morphology ; Nickel ; Nickel base alloys ; Powder metallurgy ; Simulation ; Software ; Strain rate ; Superalloys ; Temperature ; Yield strength</subject><ispartof>Materials, 2023-08, Vol.16 (17), p.5776</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c382t-c1f78c7cc8ff76adf8491d0334c48425a1490eda34878a03d1add557a684fa2e3</cites><orcidid>0000-0001-9583-6617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488392/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488392/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids></links><search><creatorcontrib>Wang, Jingzhe</creatorcontrib><creatorcontrib>Zhang, Siyu</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Srivatsa, Shesh</creatorcontrib><creatorcontrib>Huang, Zaiwang</creatorcontrib><title>Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy</title><title>Materials</title><description>With the advancement in computational approaches and experimental, simulation, and modeling tools in recent decades, a trial-and-validation method is attracting more attention in the materials community. The development of powder metallurgy Ni-based superalloys is a vivid example that relies on simulation and experiments to produce desired microstructure and properties in a tightly controlled manner. In this research, we show an integrated approach to predicting the grain size of industrial forgings starting from lab-scale cylindrical compression by employing modeling and experimental validation. (a) Cylindrical compression tests to obtain accurate flow stress data and the hot working processing window; (b) double-cone tests of laboratory scale validation; (c) sub-scale forgings for further validation under production conditions; and (d) application and validation on full-scale industrial forgings. The procedure uses modeling and simulation to predict metal flow, strain, strain rate, temperature, and the resulting grain size as a function of thermo-mechanical processing conditions. The models are calibrated with experimental data until the accuracy of the modeling predictions is at an acceptable level, which is defined as the accuracy at which the results can be used to design and evaluate industrial forgings.</description><subject>Alloys</subject><subject>Analysis</subject><subject>Compression tests</subject><subject>Deformation</subject><subject>Forgings</subject><subject>Friction</subject><subject>Grain size</subject><subject>Heat resistant alloys</subject><subject>Hot working</subject><subject>Integrated approach</subject><subject>Metal products</subject><subject>Microstructure</subject><subject>Model accuracy</subject><subject>Morphology</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Powder metallurgy</subject><subject>Simulation</subject><subject>Software</subject><subject>Strain rate</subject><subject>Superalloys</subject><subject>Temperature</subject><subject>Yield strength</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1LHTEQhoO0VLHe9BcseFMKazcfJx9XcnqwWhAVbK_DmEyOsbub02RXOP31jRyprcnFDJNn3nnDEPKBdiecm-7zAFRStVBK7pEDaoxsqRHizT_5Pjkq5aGrh3OqmXlH9rmSWglpDsjyJqOPboppbFJozjPEsbmNv7GpEZqLuL5vVukO-qm5iu4n9u0XKOib23mDGfo-bd-TtwH6gkfP8ZD8-Hr2fXXRXl6ff1stL1vHNZtaR4PSTjmnQ1ASfNDCUF8tCSe0YAugwnTogQutNHTcU_B-sVAgtQjAkB-S053uZr4b0Dscp2rAbnIcIG9tgmj_fxnjvV2nR0s7oTU3rCp8fFbI6deMZbJDLA77HkZMc7FMS847YaSo6PEr9CHNeaz_e6KYokxwU6mTHbWGHm0cQ6qDXb0eh-jSiCHW-lJJwaQ0lNeGT7sGl1MpGcNf-7SzT-u0L-vkfwCcqY68</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>Wang, Jingzhe</creator><creator>Zhang, Siyu</creator><creator>Jiang, Liang</creator><creator>Srivatsa, Shesh</creator><creator>Huang, Zaiwang</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9583-6617</orcidid></search><sort><creationdate>20230823</creationdate><title>Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy</title><author>Wang, Jingzhe ; Zhang, Siyu ; Jiang, Liang ; Srivatsa, Shesh ; Huang, Zaiwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-c1f78c7cc8ff76adf8491d0334c48425a1490eda34878a03d1add557a684fa2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Compression tests</topic><topic>Deformation</topic><topic>Forgings</topic><topic>Friction</topic><topic>Grain size</topic><topic>Heat resistant alloys</topic><topic>Hot working</topic><topic>Integrated approach</topic><topic>Metal products</topic><topic>Microstructure</topic><topic>Model accuracy</topic><topic>Morphology</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Powder metallurgy</topic><topic>Simulation</topic><topic>Software</topic><topic>Strain rate</topic><topic>Superalloys</topic><topic>Temperature</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jingzhe</creatorcontrib><creatorcontrib>Zhang, Siyu</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Srivatsa, Shesh</creatorcontrib><creatorcontrib>Huang, Zaiwang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jingzhe</au><au>Zhang, Siyu</au><au>Jiang, Liang</au><au>Srivatsa, Shesh</au><au>Huang, Zaiwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy</atitle><jtitle>Materials</jtitle><date>2023-08-23</date><risdate>2023</risdate><volume>16</volume><issue>17</issue><spage>5776</spage><pages>5776-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>With the advancement in computational approaches and experimental, simulation, and modeling tools in recent decades, a trial-and-validation method is attracting more attention in the materials community. The development of powder metallurgy Ni-based superalloys is a vivid example that relies on simulation and experiments to produce desired microstructure and properties in a tightly controlled manner. In this research, we show an integrated approach to predicting the grain size of industrial forgings starting from lab-scale cylindrical compression by employing modeling and experimental validation. (a) Cylindrical compression tests to obtain accurate flow stress data and the hot working processing window; (b) double-cone tests of laboratory scale validation; (c) sub-scale forgings for further validation under production conditions; and (d) application and validation on full-scale industrial forgings. The procedure uses modeling and simulation to predict metal flow, strain, strain rate, temperature, and the resulting grain size as a function of thermo-mechanical processing conditions. The models are calibrated with experimental data until the accuracy of the modeling predictions is at an acceptable level, which is defined as the accuracy at which the results can be used to design and evaluate industrial forgings.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37687469</pmid><doi>10.3390/ma16175776</doi><orcidid>https://orcid.org/0000-0001-9583-6617</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-08, Vol.16 (17), p.5776 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10488392 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alloys Analysis Compression tests Deformation Forgings Friction Grain size Heat resistant alloys Hot working Integrated approach Metal products Microstructure Model accuracy Morphology Nickel Nickel base alloys Powder metallurgy Simulation Software Strain rate Superalloys Temperature Yield strength |
title | Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Grain%20Size%20in%20a%20High%20Cobalt%20Nickel-Based%20Superalloy&rft.jtitle=Materials&rft.au=Wang,%20Jingzhe&rft.date=2023-08-23&rft.volume=16&rft.issue=17&rft.spage=5776&rft.pages=5776-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16175776&rft_dat=%3Cgale_pubme%3EA764266913%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862712439&rft_id=info:pmid/37687469&rft_galeid=A764266913&rfr_iscdi=true |