Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy

With the advancement in computational approaches and experimental, simulation, and modeling tools in recent decades, a trial-and-validation method is attracting more attention in the materials community. The development of powder metallurgy Ni-based superalloys is a vivid example that relies on simu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-08, Vol.16 (17), p.5776
Hauptverfasser: Wang, Jingzhe, Zhang, Siyu, Jiang, Liang, Srivatsa, Shesh, Huang, Zaiwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 5776
container_title Materials
container_volume 16
creator Wang, Jingzhe
Zhang, Siyu
Jiang, Liang
Srivatsa, Shesh
Huang, Zaiwang
description With the advancement in computational approaches and experimental, simulation, and modeling tools in recent decades, a trial-and-validation method is attracting more attention in the materials community. The development of powder metallurgy Ni-based superalloys is a vivid example that relies on simulation and experiments to produce desired microstructure and properties in a tightly controlled manner. In this research, we show an integrated approach to predicting the grain size of industrial forgings starting from lab-scale cylindrical compression by employing modeling and experimental validation. (a) Cylindrical compression tests to obtain accurate flow stress data and the hot working processing window; (b) double-cone tests of laboratory scale validation; (c) sub-scale forgings for further validation under production conditions; and (d) application and validation on full-scale industrial forgings. The procedure uses modeling and simulation to predict metal flow, strain, strain rate, temperature, and the resulting grain size as a function of thermo-mechanical processing conditions. The models are calibrated with experimental data until the accuracy of the modeling predictions is at an acceptable level, which is defined as the accuracy at which the results can be used to design and evaluate industrial forgings.
doi_str_mv 10.3390/ma16175776
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10488392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764266913</galeid><sourcerecordid>A764266913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-c1f78c7cc8ff76adf8491d0334c48425a1490eda34878a03d1add557a684fa2e3</originalsourceid><addsrcrecordid>eNpdkV1LHTEQhoO0VLHe9BcseFMKazcfJx9XcnqwWhAVbK_DmEyOsbub02RXOP31jRyprcnFDJNn3nnDEPKBdiecm-7zAFRStVBK7pEDaoxsqRHizT_5Pjkq5aGrh3OqmXlH9rmSWglpDsjyJqOPboppbFJozjPEsbmNv7GpEZqLuL5vVukO-qm5iu4n9u0XKOib23mDGfo-bd-TtwH6gkfP8ZD8-Hr2fXXRXl6ff1stL1vHNZtaR4PSTjmnQ1ASfNDCUF8tCSe0YAugwnTogQutNHTcU_B-sVAgtQjAkB-S053uZr4b0Dscp2rAbnIcIG9tgmj_fxnjvV2nR0s7oTU3rCp8fFbI6deMZbJDLA77HkZMc7FMS847YaSo6PEr9CHNeaz_e6KYokxwU6mTHbWGHm0cQ6qDXb0eh-jSiCHW-lJJwaQ0lNeGT7sGl1MpGcNf-7SzT-u0L-vkfwCcqY68</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862712439</pqid></control><display><type>article</type><title>Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Jingzhe ; Zhang, Siyu ; Jiang, Liang ; Srivatsa, Shesh ; Huang, Zaiwang</creator><creatorcontrib>Wang, Jingzhe ; Zhang, Siyu ; Jiang, Liang ; Srivatsa, Shesh ; Huang, Zaiwang</creatorcontrib><description>With the advancement in computational approaches and experimental, simulation, and modeling tools in recent decades, a trial-and-validation method is attracting more attention in the materials community. The development of powder metallurgy Ni-based superalloys is a vivid example that relies on simulation and experiments to produce desired microstructure and properties in a tightly controlled manner. In this research, we show an integrated approach to predicting the grain size of industrial forgings starting from lab-scale cylindrical compression by employing modeling and experimental validation. (a) Cylindrical compression tests to obtain accurate flow stress data and the hot working processing window; (b) double-cone tests of laboratory scale validation; (c) sub-scale forgings for further validation under production conditions; and (d) application and validation on full-scale industrial forgings. The procedure uses modeling and simulation to predict metal flow, strain, strain rate, temperature, and the resulting grain size as a function of thermo-mechanical processing conditions. The models are calibrated with experimental data until the accuracy of the modeling predictions is at an acceptable level, which is defined as the accuracy at which the results can be used to design and evaluate industrial forgings.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16175776</identifier><identifier>PMID: 37687469</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloys ; Analysis ; Compression tests ; Deformation ; Forgings ; Friction ; Grain size ; Heat resistant alloys ; Hot working ; Integrated approach ; Metal products ; Microstructure ; Model accuracy ; Morphology ; Nickel ; Nickel base alloys ; Powder metallurgy ; Simulation ; Software ; Strain rate ; Superalloys ; Temperature ; Yield strength</subject><ispartof>Materials, 2023-08, Vol.16 (17), p.5776</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c382t-c1f78c7cc8ff76adf8491d0334c48425a1490eda34878a03d1add557a684fa2e3</cites><orcidid>0000-0001-9583-6617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488392/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488392/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids></links><search><creatorcontrib>Wang, Jingzhe</creatorcontrib><creatorcontrib>Zhang, Siyu</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Srivatsa, Shesh</creatorcontrib><creatorcontrib>Huang, Zaiwang</creatorcontrib><title>Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy</title><title>Materials</title><description>With the advancement in computational approaches and experimental, simulation, and modeling tools in recent decades, a trial-and-validation method is attracting more attention in the materials community. The development of powder metallurgy Ni-based superalloys is a vivid example that relies on simulation and experiments to produce desired microstructure and properties in a tightly controlled manner. In this research, we show an integrated approach to predicting the grain size of industrial forgings starting from lab-scale cylindrical compression by employing modeling and experimental validation. (a) Cylindrical compression tests to obtain accurate flow stress data and the hot working processing window; (b) double-cone tests of laboratory scale validation; (c) sub-scale forgings for further validation under production conditions; and (d) application and validation on full-scale industrial forgings. The procedure uses modeling and simulation to predict metal flow, strain, strain rate, temperature, and the resulting grain size as a function of thermo-mechanical processing conditions. The models are calibrated with experimental data until the accuracy of the modeling predictions is at an acceptable level, which is defined as the accuracy at which the results can be used to design and evaluate industrial forgings.</description><subject>Alloys</subject><subject>Analysis</subject><subject>Compression tests</subject><subject>Deformation</subject><subject>Forgings</subject><subject>Friction</subject><subject>Grain size</subject><subject>Heat resistant alloys</subject><subject>Hot working</subject><subject>Integrated approach</subject><subject>Metal products</subject><subject>Microstructure</subject><subject>Model accuracy</subject><subject>Morphology</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Powder metallurgy</subject><subject>Simulation</subject><subject>Software</subject><subject>Strain rate</subject><subject>Superalloys</subject><subject>Temperature</subject><subject>Yield strength</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1LHTEQhoO0VLHe9BcseFMKazcfJx9XcnqwWhAVbK_DmEyOsbub02RXOP31jRyprcnFDJNn3nnDEPKBdiecm-7zAFRStVBK7pEDaoxsqRHizT_5Pjkq5aGrh3OqmXlH9rmSWglpDsjyJqOPboppbFJozjPEsbmNv7GpEZqLuL5vVukO-qm5iu4n9u0XKOib23mDGfo-bd-TtwH6gkfP8ZD8-Hr2fXXRXl6ff1stL1vHNZtaR4PSTjmnQ1ASfNDCUF8tCSe0YAugwnTogQutNHTcU_B-sVAgtQjAkB-S053uZr4b0Dscp2rAbnIcIG9tgmj_fxnjvV2nR0s7oTU3rCp8fFbI6deMZbJDLA77HkZMc7FMS847YaSo6PEr9CHNeaz_e6KYokxwU6mTHbWGHm0cQ6qDXb0eh-jSiCHW-lJJwaQ0lNeGT7sGl1MpGcNf-7SzT-u0L-vkfwCcqY68</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>Wang, Jingzhe</creator><creator>Zhang, Siyu</creator><creator>Jiang, Liang</creator><creator>Srivatsa, Shesh</creator><creator>Huang, Zaiwang</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9583-6617</orcidid></search><sort><creationdate>20230823</creationdate><title>Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy</title><author>Wang, Jingzhe ; Zhang, Siyu ; Jiang, Liang ; Srivatsa, Shesh ; Huang, Zaiwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-c1f78c7cc8ff76adf8491d0334c48425a1490eda34878a03d1add557a684fa2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Compression tests</topic><topic>Deformation</topic><topic>Forgings</topic><topic>Friction</topic><topic>Grain size</topic><topic>Heat resistant alloys</topic><topic>Hot working</topic><topic>Integrated approach</topic><topic>Metal products</topic><topic>Microstructure</topic><topic>Model accuracy</topic><topic>Morphology</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Powder metallurgy</topic><topic>Simulation</topic><topic>Software</topic><topic>Strain rate</topic><topic>Superalloys</topic><topic>Temperature</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jingzhe</creatorcontrib><creatorcontrib>Zhang, Siyu</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Srivatsa, Shesh</creatorcontrib><creatorcontrib>Huang, Zaiwang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jingzhe</au><au>Zhang, Siyu</au><au>Jiang, Liang</au><au>Srivatsa, Shesh</au><au>Huang, Zaiwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy</atitle><jtitle>Materials</jtitle><date>2023-08-23</date><risdate>2023</risdate><volume>16</volume><issue>17</issue><spage>5776</spage><pages>5776-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>With the advancement in computational approaches and experimental, simulation, and modeling tools in recent decades, a trial-and-validation method is attracting more attention in the materials community. The development of powder metallurgy Ni-based superalloys is a vivid example that relies on simulation and experiments to produce desired microstructure and properties in a tightly controlled manner. In this research, we show an integrated approach to predicting the grain size of industrial forgings starting from lab-scale cylindrical compression by employing modeling and experimental validation. (a) Cylindrical compression tests to obtain accurate flow stress data and the hot working processing window; (b) double-cone tests of laboratory scale validation; (c) sub-scale forgings for further validation under production conditions; and (d) application and validation on full-scale industrial forgings. The procedure uses modeling and simulation to predict metal flow, strain, strain rate, temperature, and the resulting grain size as a function of thermo-mechanical processing conditions. The models are calibrated with experimental data until the accuracy of the modeling predictions is at an acceptable level, which is defined as the accuracy at which the results can be used to design and evaluate industrial forgings.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37687469</pmid><doi>10.3390/ma16175776</doi><orcidid>https://orcid.org/0000-0001-9583-6617</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-08, Vol.16 (17), p.5776
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10488392
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alloys
Analysis
Compression tests
Deformation
Forgings
Friction
Grain size
Heat resistant alloys
Hot working
Integrated approach
Metal products
Microstructure
Model accuracy
Morphology
Nickel
Nickel base alloys
Powder metallurgy
Simulation
Software
Strain rate
Superalloys
Temperature
Yield strength
title Prediction of Grain Size in a High Cobalt Nickel-Based Superalloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Grain%20Size%20in%20a%20High%20Cobalt%20Nickel-Based%20Superalloy&rft.jtitle=Materials&rft.au=Wang,%20Jingzhe&rft.date=2023-08-23&rft.volume=16&rft.issue=17&rft.spage=5776&rft.pages=5776-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16175776&rft_dat=%3Cgale_pubme%3EA764266913%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862712439&rft_id=info:pmid/37687469&rft_galeid=A764266913&rfr_iscdi=true