An interpretable measure of semantic similarity for predicting eye movements in reading

Predictions about upcoming content play an important role during language comprehension and processing. Semantic similarity as a metric has been used to predict how words are processed in context in language comprehension and processing tasks. This study proposes a novel, dynamic approach for comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychonomic bulletin & review 2023-08, Vol.30 (4), p.1227-1242
Hauptverfasser: Kun, Sun, Qiuying, Wang, Xiaofei, Lu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1242
container_issue 4
container_start_page 1227
container_title Psychonomic bulletin & review
container_volume 30
creator Kun, Sun
Qiuying, Wang
Xiaofei, Lu
description Predictions about upcoming content play an important role during language comprehension and processing. Semantic similarity as a metric has been used to predict how words are processed in context in language comprehension and processing tasks. This study proposes a novel, dynamic approach for computing contextual semantic similarity, evaluates the extent to which the semantic similarity measures computed using this approach can predict fixation durations in reading tasks recorded in a corpus of eye-tracking data, and compares the performance of these measures to that of semantic similarity measures computed using the cosine and Euclidean methods. Our results reveal that the semantic similarity measures generated by our approach are significantly predictive of fixation durations on reading and outperform those generated by the two existing approaches. The findings of this study contribute to a better understanding of how humans process words in context and make predictions in language comprehension and processing. The effective and interpretable approach to computing contextual semantic similarity proposed in this study can also facilitate further explorations of other experimental data on language comprehension and processing.
doi_str_mv 10.3758/s13423-022-02240-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10482772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773121030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-7e440689823fcde0d76ec96761dff4392e3cd7071e51347040ba3174dd02e3053</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxYMotla_gAsJuHEzepObmWRWUkr9AwU3LS5DXnLnmTKTeSYzhfftTX21ahddhATO757cw2HstYD3qFvzoQhUEhuQ8vYoaMwTdixaFE2LEp7WN3R906NRR-xFKdcA0HZ995wdYadRKtUes--nice0UN5lWtxmJD6RK2smPg-80OTSEj0vcYqjy3HZ82HOvLIh-iWmLad9nZhvaKK0lOrEM7lQhZfs2eDGQq_u7hN29en88uxLc_Ht89ez04vGKwNLo0kp6ExvJA4-EATdke873YkwDAp7SeiDBi2orWE1KNg4FFqFAFWCFk_Yx4Pvbt1MFHxdI7vR7nKcXN7b2UX7v5LiD7udb6wAZaTWsjq8u3PI88-VymKnWDyNo0s0r8VWCIUUgFDRtw_Q63nNqeaz0hihhcEeKyUPlM9zKZmG-20E2Nvi7KE4W0uzv4uzpg69-TfH_cifpiqAB6BUKW0p__37EdtfMBGkIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881718393</pqid></control><display><type>article</type><title>An interpretable measure of semantic similarity for predicting eye movements in reading</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kun, Sun ; Qiuying, Wang ; Xiaofei, Lu</creator><creatorcontrib>Kun, Sun ; Qiuying, Wang ; Xiaofei, Lu</creatorcontrib><description>Predictions about upcoming content play an important role during language comprehension and processing. Semantic similarity as a metric has been used to predict how words are processed in context in language comprehension and processing tasks. This study proposes a novel, dynamic approach for computing contextual semantic similarity, evaluates the extent to which the semantic similarity measures computed using this approach can predict fixation durations in reading tasks recorded in a corpus of eye-tracking data, and compares the performance of these measures to that of semantic similarity measures computed using the cosine and Euclidean methods. Our results reveal that the semantic similarity measures generated by our approach are significantly predictive of fixation durations on reading and outperform those generated by the two existing approaches. The findings of this study contribute to a better understanding of how humans process words in context and make predictions in language comprehension and processing. The effective and interpretable approach to computing contextual semantic similarity proposed in this study can also facilitate further explorations of other experimental data on language comprehension and processing.</description><identifier>ISSN: 1069-9384</identifier><identifier>EISSN: 1531-5320</identifier><identifier>DOI: 10.3758/s13423-022-02240-8</identifier><identifier>PMID: 36732445</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Behavioral Science and Psychology ; Cognitive Psychology ; Comprehension ; Datasets ; Eye Movements ; Humans ; Language ; Linguistics ; Picture books ; Psychology ; Reading ; Reading comprehension ; Semantics ; Similarity measures ; Theoretical/Review</subject><ispartof>Psychonomic bulletin &amp; review, 2023-08, Vol.30 (4), p.1227-1242</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>Copyright Springer Nature B.V. Aug 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c480t-7e440689823fcde0d76ec96761dff4392e3cd7071e51347040ba3174dd02e3053</cites><orcidid>0000-0001-9766-269X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3758/s13423-022-02240-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3758/s13423-022-02240-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36732445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kun, Sun</creatorcontrib><creatorcontrib>Qiuying, Wang</creatorcontrib><creatorcontrib>Xiaofei, Lu</creatorcontrib><title>An interpretable measure of semantic similarity for predicting eye movements in reading</title><title>Psychonomic bulletin &amp; review</title><addtitle>Psychon Bull Rev</addtitle><addtitle>Psychon Bull Rev</addtitle><description>Predictions about upcoming content play an important role during language comprehension and processing. Semantic similarity as a metric has been used to predict how words are processed in context in language comprehension and processing tasks. This study proposes a novel, dynamic approach for computing contextual semantic similarity, evaluates the extent to which the semantic similarity measures computed using this approach can predict fixation durations in reading tasks recorded in a corpus of eye-tracking data, and compares the performance of these measures to that of semantic similarity measures computed using the cosine and Euclidean methods. Our results reveal that the semantic similarity measures generated by our approach are significantly predictive of fixation durations on reading and outperform those generated by the two existing approaches. The findings of this study contribute to a better understanding of how humans process words in context and make predictions in language comprehension and processing. The effective and interpretable approach to computing contextual semantic similarity proposed in this study can also facilitate further explorations of other experimental data on language comprehension and processing.</description><subject>Behavioral Science and Psychology</subject><subject>Cognitive Psychology</subject><subject>Comprehension</subject><subject>Datasets</subject><subject>Eye Movements</subject><subject>Humans</subject><subject>Language</subject><subject>Linguistics</subject><subject>Picture books</subject><subject>Psychology</subject><subject>Reading</subject><subject>Reading comprehension</subject><subject>Semantics</subject><subject>Similarity measures</subject><subject>Theoretical/Review</subject><issn>1069-9384</issn><issn>1531-5320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9rFTEUxYMotla_gAsJuHEzepObmWRWUkr9AwU3LS5DXnLnmTKTeSYzhfftTX21ahddhATO757cw2HstYD3qFvzoQhUEhuQ8vYoaMwTdixaFE2LEp7WN3R906NRR-xFKdcA0HZ995wdYadRKtUes--nice0UN5lWtxmJD6RK2smPg-80OTSEj0vcYqjy3HZ82HOvLIh-iWmLad9nZhvaKK0lOrEM7lQhZfs2eDGQq_u7hN29en88uxLc_Ht89ez04vGKwNLo0kp6ExvJA4-EATdke873YkwDAp7SeiDBi2orWE1KNg4FFqFAFWCFk_Yx4Pvbt1MFHxdI7vR7nKcXN7b2UX7v5LiD7udb6wAZaTWsjq8u3PI88-VymKnWDyNo0s0r8VWCIUUgFDRtw_Q63nNqeaz0hihhcEeKyUPlM9zKZmG-20E2Nvi7KE4W0uzv4uzpg69-TfH_cifpiqAB6BUKW0p__37EdtfMBGkIQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Kun, Sun</creator><creator>Qiuying, Wang</creator><creator>Xiaofei, Lu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9766-269X</orcidid></search><sort><creationdate>20230801</creationdate><title>An interpretable measure of semantic similarity for predicting eye movements in reading</title><author>Kun, Sun ; Qiuying, Wang ; Xiaofei, Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-7e440689823fcde0d76ec96761dff4392e3cd7071e51347040ba3174dd02e3053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Behavioral Science and Psychology</topic><topic>Cognitive Psychology</topic><topic>Comprehension</topic><topic>Datasets</topic><topic>Eye Movements</topic><topic>Humans</topic><topic>Language</topic><topic>Linguistics</topic><topic>Picture books</topic><topic>Psychology</topic><topic>Reading</topic><topic>Reading comprehension</topic><topic>Semantics</topic><topic>Similarity measures</topic><topic>Theoretical/Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kun, Sun</creatorcontrib><creatorcontrib>Qiuying, Wang</creatorcontrib><creatorcontrib>Xiaofei, Lu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Psychonomic bulletin &amp; review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kun, Sun</au><au>Qiuying, Wang</au><au>Xiaofei, Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interpretable measure of semantic similarity for predicting eye movements in reading</atitle><jtitle>Psychonomic bulletin &amp; review</jtitle><stitle>Psychon Bull Rev</stitle><addtitle>Psychon Bull Rev</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>30</volume><issue>4</issue><spage>1227</spage><epage>1242</epage><pages>1227-1242</pages><issn>1069-9384</issn><eissn>1531-5320</eissn><abstract>Predictions about upcoming content play an important role during language comprehension and processing. Semantic similarity as a metric has been used to predict how words are processed in context in language comprehension and processing tasks. This study proposes a novel, dynamic approach for computing contextual semantic similarity, evaluates the extent to which the semantic similarity measures computed using this approach can predict fixation durations in reading tasks recorded in a corpus of eye-tracking data, and compares the performance of these measures to that of semantic similarity measures computed using the cosine and Euclidean methods. Our results reveal that the semantic similarity measures generated by our approach are significantly predictive of fixation durations on reading and outperform those generated by the two existing approaches. The findings of this study contribute to a better understanding of how humans process words in context and make predictions in language comprehension and processing. The effective and interpretable approach to computing contextual semantic similarity proposed in this study can also facilitate further explorations of other experimental data on language comprehension and processing.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36732445</pmid><doi>10.3758/s13423-022-02240-8</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9766-269X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1069-9384
ispartof Psychonomic bulletin & review, 2023-08, Vol.30 (4), p.1227-1242
issn 1069-9384
1531-5320
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10482772
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings
subjects Behavioral Science and Psychology
Cognitive Psychology
Comprehension
Datasets
Eye Movements
Humans
Language
Linguistics
Picture books
Psychology
Reading
Reading comprehension
Semantics
Similarity measures
Theoretical/Review
title An interpretable measure of semantic similarity for predicting eye movements in reading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interpretable%20measure%20of%20semantic%20similarity%20for%20predicting%20eye%20movements%20in%20reading&rft.jtitle=Psychonomic%20bulletin%20&%20review&rft.au=Kun,%20Sun&rft.date=2023-08-01&rft.volume=30&rft.issue=4&rft.spage=1227&rft.epage=1242&rft.pages=1227-1242&rft.issn=1069-9384&rft.eissn=1531-5320&rft_id=info:doi/10.3758/s13423-022-02240-8&rft_dat=%3Cproquest_pubme%3E2773121030%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881718393&rft_id=info:pmid/36732445&rfr_iscdi=true