An interpretable measure of semantic similarity for predicting eye movements in reading
Predictions about upcoming content play an important role during language comprehension and processing. Semantic similarity as a metric has been used to predict how words are processed in context in language comprehension and processing tasks. This study proposes a novel, dynamic approach for comput...
Gespeichert in:
Veröffentlicht in: | Psychonomic bulletin & review 2023-08, Vol.30 (4), p.1227-1242 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1242 |
---|---|
container_issue | 4 |
container_start_page | 1227 |
container_title | Psychonomic bulletin & review |
container_volume | 30 |
creator | Kun, Sun Qiuying, Wang Xiaofei, Lu |
description | Predictions about upcoming content play an important role during language comprehension and processing. Semantic similarity as a metric has been used to predict how words are processed in context in language comprehension and processing tasks. This study proposes a novel, dynamic approach for computing contextual semantic similarity, evaluates the extent to which the semantic similarity measures computed using this approach can predict fixation durations in reading tasks recorded in a corpus of eye-tracking data, and compares the performance of these measures to that of semantic similarity measures computed using the cosine and Euclidean methods. Our results reveal that the semantic similarity measures generated by our approach are significantly predictive of fixation durations on reading and outperform those generated by the two existing approaches. The findings of this study contribute to a better understanding of how humans process words in context and make predictions in language comprehension and processing. The effective and interpretable approach to computing contextual semantic similarity proposed in this study can also facilitate further explorations of other experimental data on language comprehension and processing. |
doi_str_mv | 10.3758/s13423-022-02240-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10482772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2773121030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-7e440689823fcde0d76ec96761dff4392e3cd7071e51347040ba3174dd02e3053</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxYMotla_gAsJuHEzepObmWRWUkr9AwU3LS5DXnLnmTKTeSYzhfftTX21ahddhATO757cw2HstYD3qFvzoQhUEhuQ8vYoaMwTdixaFE2LEp7WN3R906NRR-xFKdcA0HZ995wdYadRKtUes--nice0UN5lWtxmJD6RK2smPg-80OTSEj0vcYqjy3HZ82HOvLIh-iWmLad9nZhvaKK0lOrEM7lQhZfs2eDGQq_u7hN29en88uxLc_Ht89ez04vGKwNLo0kp6ExvJA4-EATdke873YkwDAp7SeiDBi2orWE1KNg4FFqFAFWCFk_Yx4Pvbt1MFHxdI7vR7nKcXN7b2UX7v5LiD7udb6wAZaTWsjq8u3PI88-VymKnWDyNo0s0r8VWCIUUgFDRtw_Q63nNqeaz0hihhcEeKyUPlM9zKZmG-20E2Nvi7KE4W0uzv4uzpg69-TfH_cifpiqAB6BUKW0p__37EdtfMBGkIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881718393</pqid></control><display><type>article</type><title>An interpretable measure of semantic similarity for predicting eye movements in reading</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kun, Sun ; Qiuying, Wang ; Xiaofei, Lu</creator><creatorcontrib>Kun, Sun ; Qiuying, Wang ; Xiaofei, Lu</creatorcontrib><description>Predictions about upcoming content play an important role during language comprehension and processing. Semantic similarity as a metric has been used to predict how words are processed in context in language comprehension and processing tasks. This study proposes a novel, dynamic approach for computing contextual semantic similarity, evaluates the extent to which the semantic similarity measures computed using this approach can predict fixation durations in reading tasks recorded in a corpus of eye-tracking data, and compares the performance of these measures to that of semantic similarity measures computed using the cosine and Euclidean methods. Our results reveal that the semantic similarity measures generated by our approach are significantly predictive of fixation durations on reading and outperform those generated by the two existing approaches. The findings of this study contribute to a better understanding of how humans process words in context and make predictions in language comprehension and processing. The effective and interpretable approach to computing contextual semantic similarity proposed in this study can also facilitate further explorations of other experimental data on language comprehension and processing.</description><identifier>ISSN: 1069-9384</identifier><identifier>EISSN: 1531-5320</identifier><identifier>DOI: 10.3758/s13423-022-02240-8</identifier><identifier>PMID: 36732445</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Behavioral Science and Psychology ; Cognitive Psychology ; Comprehension ; Datasets ; Eye Movements ; Humans ; Language ; Linguistics ; Picture books ; Psychology ; Reading ; Reading comprehension ; Semantics ; Similarity measures ; Theoretical/Review</subject><ispartof>Psychonomic bulletin & review, 2023-08, Vol.30 (4), p.1227-1242</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>Copyright Springer Nature B.V. Aug 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c480t-7e440689823fcde0d76ec96761dff4392e3cd7071e51347040ba3174dd02e3053</cites><orcidid>0000-0001-9766-269X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3758/s13423-022-02240-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3758/s13423-022-02240-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36732445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kun, Sun</creatorcontrib><creatorcontrib>Qiuying, Wang</creatorcontrib><creatorcontrib>Xiaofei, Lu</creatorcontrib><title>An interpretable measure of semantic similarity for predicting eye movements in reading</title><title>Psychonomic bulletin & review</title><addtitle>Psychon Bull Rev</addtitle><addtitle>Psychon Bull Rev</addtitle><description>Predictions about upcoming content play an important role during language comprehension and processing. Semantic similarity as a metric has been used to predict how words are processed in context in language comprehension and processing tasks. This study proposes a novel, dynamic approach for computing contextual semantic similarity, evaluates the extent to which the semantic similarity measures computed using this approach can predict fixation durations in reading tasks recorded in a corpus of eye-tracking data, and compares the performance of these measures to that of semantic similarity measures computed using the cosine and Euclidean methods. Our results reveal that the semantic similarity measures generated by our approach are significantly predictive of fixation durations on reading and outperform those generated by the two existing approaches. The findings of this study contribute to a better understanding of how humans process words in context and make predictions in language comprehension and processing. The effective and interpretable approach to computing contextual semantic similarity proposed in this study can also facilitate further explorations of other experimental data on language comprehension and processing.</description><subject>Behavioral Science and Psychology</subject><subject>Cognitive Psychology</subject><subject>Comprehension</subject><subject>Datasets</subject><subject>Eye Movements</subject><subject>Humans</subject><subject>Language</subject><subject>Linguistics</subject><subject>Picture books</subject><subject>Psychology</subject><subject>Reading</subject><subject>Reading comprehension</subject><subject>Semantics</subject><subject>Similarity measures</subject><subject>Theoretical/Review</subject><issn>1069-9384</issn><issn>1531-5320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9rFTEUxYMotla_gAsJuHEzepObmWRWUkr9AwU3LS5DXnLnmTKTeSYzhfftTX21ahddhATO757cw2HstYD3qFvzoQhUEhuQ8vYoaMwTdixaFE2LEp7WN3R906NRR-xFKdcA0HZ995wdYadRKtUes--nice0UN5lWtxmJD6RK2smPg-80OTSEj0vcYqjy3HZ82HOvLIh-iWmLad9nZhvaKK0lOrEM7lQhZfs2eDGQq_u7hN29en88uxLc_Ht89ez04vGKwNLo0kp6ExvJA4-EATdke873YkwDAp7SeiDBi2orWE1KNg4FFqFAFWCFk_Yx4Pvbt1MFHxdI7vR7nKcXN7b2UX7v5LiD7udb6wAZaTWsjq8u3PI88-VymKnWDyNo0s0r8VWCIUUgFDRtw_Q63nNqeaz0hihhcEeKyUPlM9zKZmG-20E2Nvi7KE4W0uzv4uzpg69-TfH_cifpiqAB6BUKW0p__37EdtfMBGkIQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Kun, Sun</creator><creator>Qiuying, Wang</creator><creator>Xiaofei, Lu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9766-269X</orcidid></search><sort><creationdate>20230801</creationdate><title>An interpretable measure of semantic similarity for predicting eye movements in reading</title><author>Kun, Sun ; Qiuying, Wang ; Xiaofei, Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-7e440689823fcde0d76ec96761dff4392e3cd7071e51347040ba3174dd02e3053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Behavioral Science and Psychology</topic><topic>Cognitive Psychology</topic><topic>Comprehension</topic><topic>Datasets</topic><topic>Eye Movements</topic><topic>Humans</topic><topic>Language</topic><topic>Linguistics</topic><topic>Picture books</topic><topic>Psychology</topic><topic>Reading</topic><topic>Reading comprehension</topic><topic>Semantics</topic><topic>Similarity measures</topic><topic>Theoretical/Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kun, Sun</creatorcontrib><creatorcontrib>Qiuying, Wang</creatorcontrib><creatorcontrib>Xiaofei, Lu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Psychonomic bulletin & review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kun, Sun</au><au>Qiuying, Wang</au><au>Xiaofei, Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interpretable measure of semantic similarity for predicting eye movements in reading</atitle><jtitle>Psychonomic bulletin & review</jtitle><stitle>Psychon Bull Rev</stitle><addtitle>Psychon Bull Rev</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>30</volume><issue>4</issue><spage>1227</spage><epage>1242</epage><pages>1227-1242</pages><issn>1069-9384</issn><eissn>1531-5320</eissn><abstract>Predictions about upcoming content play an important role during language comprehension and processing. Semantic similarity as a metric has been used to predict how words are processed in context in language comprehension and processing tasks. This study proposes a novel, dynamic approach for computing contextual semantic similarity, evaluates the extent to which the semantic similarity measures computed using this approach can predict fixation durations in reading tasks recorded in a corpus of eye-tracking data, and compares the performance of these measures to that of semantic similarity measures computed using the cosine and Euclidean methods. Our results reveal that the semantic similarity measures generated by our approach are significantly predictive of fixation durations on reading and outperform those generated by the two existing approaches. The findings of this study contribute to a better understanding of how humans process words in context and make predictions in language comprehension and processing. The effective and interpretable approach to computing contextual semantic similarity proposed in this study can also facilitate further explorations of other experimental data on language comprehension and processing.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36732445</pmid><doi>10.3758/s13423-022-02240-8</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9766-269X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1069-9384 |
ispartof | Psychonomic bulletin & review, 2023-08, Vol.30 (4), p.1227-1242 |
issn | 1069-9384 1531-5320 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10482772 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings |
subjects | Behavioral Science and Psychology Cognitive Psychology Comprehension Datasets Eye Movements Humans Language Linguistics Picture books Psychology Reading Reading comprehension Semantics Similarity measures Theoretical/Review |
title | An interpretable measure of semantic similarity for predicting eye movements in reading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interpretable%20measure%20of%20semantic%20similarity%20for%20predicting%20eye%20movements%20in%20reading&rft.jtitle=Psychonomic%20bulletin%20&%20review&rft.au=Kun,%20Sun&rft.date=2023-08-01&rft.volume=30&rft.issue=4&rft.spage=1227&rft.epage=1242&rft.pages=1227-1242&rft.issn=1069-9384&rft.eissn=1531-5320&rft_id=info:doi/10.3758/s13423-022-02240-8&rft_dat=%3Cproquest_pubme%3E2773121030%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881718393&rft_id=info:pmid/36732445&rfr_iscdi=true |