Human amygdala involvement in Alzheimer's disease revealed by stereological and dia‐PASEF analysis

Alzheimer's disease (AD) is characterized by the accumulation of pathological amyloid‐β (Aβ) and Tau proteins. According to the prion‐like hypothesis, both proteins can seed and disseminate through brain regions through neural connections and glial cells. The amygdaloid complex (AC) is involved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain pathology (Zurich, Switzerland) Switzerland), 2023-09, Vol.33 (5), p.e13180-n/a
Hauptverfasser: Gonzalez‐Rodriguez, Melania, Villar‐Conde, Sandra, Astillero‐Lopez, Veronica, Villanueva‐Anguita, Patricia, Ubeda‐Banon, Isabel, Flores‐Cuadrado, Alicia, Martinez‐Marcos, Alino, Saiz‐Sanchez, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page e13180
container_title Brain pathology (Zurich, Switzerland)
container_volume 33
creator Gonzalez‐Rodriguez, Melania
Villar‐Conde, Sandra
Astillero‐Lopez, Veronica
Villanueva‐Anguita, Patricia
Ubeda‐Banon, Isabel
Flores‐Cuadrado, Alicia
Martinez‐Marcos, Alino
Saiz‐Sanchez, Daniel
description Alzheimer's disease (AD) is characterized by the accumulation of pathological amyloid‐β (Aβ) and Tau proteins. According to the prion‐like hypothesis, both proteins can seed and disseminate through brain regions through neural connections and glial cells. The amygdaloid complex (AC) is involved early in the disease, and its widespread connections with other brain regions indicate that it is a hub for propagating pathology. To characterize changes in the AC as well as the involvement of neuronal and glial cells in AD, a combined stereological and proteomic analysis was performed in non‐Alzheimer's disease and AD human samples. The synaptic alterations identified by proteomic data analysis could be related to the volume reduction observed in AD by the Cavalieri probe without neuronal loss. The pathological markers appeared in a gradient pattern with the medial region (cortical nucleus, Co) being more affected than lateral regions, suggesting the relevance of connections in the distribution of the pathology among different brain regions. Generalized astrogliosis was observed in every AC nucleus, likely related to deposits of pathological proteins. Astrocytes might mediate phagocytic microglial activation, whereas microglia might play a dual role since protective and toxic phenotypes have been described. These results highlight the potential participation of the amygdala in the disease spreading from/to olfactory areas, the temporal lobe and beyond. Proteomic data are available via ProteomeXchange with identifier PXD038322. A combined stereological and proteomic analysis revealed amygdala volume reduction linked to synaptic dysfunction in Alzheimer''s disease samples. The pathological markers gradient suggested the relevance of connections in the distribution of the pathology among different brain regions. Extended astrogliosis, likely as response to pathologic deposits, could mediate phagocytic microglial activation. Microglia might play a dual role since protective and toxic phenotypes have been described. In conclusion, amygdala might promote the spreading of pathology from/to olfactory areas, the temporal lobe and beyond.
doi_str_mv 10.1111/bpa.13180
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10467039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858616407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4440-d6e80171d443257eecb6dced41980546343992297dfc1a2bfcd5cee496b773c23</originalsourceid><addsrcrecordid>eNp1kd9qFDEUh4NUbG298AVkoBfqxbTJ5N_kStbSWqFgQXsdMsnZbUpmsk12VsYrH8Fn9EnMum3RQnNzTjhfPk74IfSa4CNSznG3NEeEkhY_Q3tEclxTQdVO6THhtaCY76KXOd9gTJRQ_AXapZJSQjnbQ-587M1QmX5aOBNM5Yd1DGvoYViVvpqFH9fge0hvc-V8BpOhSrAGE8BV3VTlFSSIIS68NaEygyuU-f3z1-Xs6-lZuZswZZ8P0PO5CRle3dV9dHV2-u3kvL748unzyeyitowxXDsBLSaSOMZowyWA7YSz4BhRLeZMUEaVahol3dwS03Rz67gFYEp0UlLb0H30Yetdjl0P5emwSiboZfK9SZOOxuv_J4O_1ou41gQzITFVxfDuzpDi7Qh5pXufLYRgBohj1k3bSCE4ZrKgh4_Qmzim8uMNxVtBBMMb6v2WsinmnGD-sA3BehOeLuHpv-EV9s2_6z-Q92kV4HgLfPcBpqdN-uPlbKv8AyjNpOU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858616407</pqid></control><display><type>article</type><title>Human amygdala involvement in Alzheimer's disease revealed by stereological and dia‐PASEF analysis</title><source>Open Access: PubMed Central</source><source>Wiley Online Library Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Open Access</source><source>EZB Electronic Journals Library</source><creator>Gonzalez‐Rodriguez, Melania ; Villar‐Conde, Sandra ; Astillero‐Lopez, Veronica ; Villanueva‐Anguita, Patricia ; Ubeda‐Banon, Isabel ; Flores‐Cuadrado, Alicia ; Martinez‐Marcos, Alino ; Saiz‐Sanchez, Daniel</creator><creatorcontrib>Gonzalez‐Rodriguez, Melania ; Villar‐Conde, Sandra ; Astillero‐Lopez, Veronica ; Villanueva‐Anguita, Patricia ; Ubeda‐Banon, Isabel ; Flores‐Cuadrado, Alicia ; Martinez‐Marcos, Alino ; Saiz‐Sanchez, Daniel</creatorcontrib><description>Alzheimer's disease (AD) is characterized by the accumulation of pathological amyloid‐β (Aβ) and Tau proteins. According to the prion‐like hypothesis, both proteins can seed and disseminate through brain regions through neural connections and glial cells. The amygdaloid complex (AC) is involved early in the disease, and its widespread connections with other brain regions indicate that it is a hub for propagating pathology. To characterize changes in the AC as well as the involvement of neuronal and glial cells in AD, a combined stereological and proteomic analysis was performed in non‐Alzheimer's disease and AD human samples. The synaptic alterations identified by proteomic data analysis could be related to the volume reduction observed in AD by the Cavalieri probe without neuronal loss. The pathological markers appeared in a gradient pattern with the medial region (cortical nucleus, Co) being more affected than lateral regions, suggesting the relevance of connections in the distribution of the pathology among different brain regions. Generalized astrogliosis was observed in every AC nucleus, likely related to deposits of pathological proteins. Astrocytes might mediate phagocytic microglial activation, whereas microglia might play a dual role since protective and toxic phenotypes have been described. These results highlight the potential participation of the amygdala in the disease spreading from/to olfactory areas, the temporal lobe and beyond. Proteomic data are available via ProteomeXchange with identifier PXD038322. A combined stereological and proteomic analysis revealed amygdala volume reduction linked to synaptic dysfunction in Alzheimer''s disease samples. The pathological markers gradient suggested the relevance of connections in the distribution of the pathology among different brain regions. Extended astrogliosis, likely as response to pathologic deposits, could mediate phagocytic microglial activation. Microglia might play a dual role since protective and toxic phenotypes have been described. In conclusion, amygdala might promote the spreading of pathology from/to olfactory areas, the temporal lobe and beyond.</description><identifier>ISSN: 1015-6305</identifier><identifier>EISSN: 1750-3639</identifier><identifier>DOI: 10.1111/bpa.13180</identifier><identifier>PMID: 37331354</identifier><language>eng</language><publisher>Switzerland: John Wiley &amp; Sons, Inc</publisher><subject>Alzheimer's disease ; Amygdala ; antioxidant protein 2 (AOP2) ; Astrocytes ; BM88 antigen (BM88) ; Brain ; calpactin II ; calpactin‐1 heavy chain (CAL1H) ; centaurin‐alpha‐1 (CENTA1) ; Data analysis ; endonexin II (ENX2) ; Glial cells ; Gliosis ; Microglia ; Neurodegenerative diseases ; Neuroglia ; Neuronal-glial interactions ; nuclear chloride ion channel 27 (NCC27) ; Pathology ; Phagocytes ; Phenotypes ; Proteins ; Proteomics ; Tau protein ; Temporal lobe ; β-Amyloid</subject><ispartof>Brain pathology (Zurich, Switzerland), 2023-09, Vol.33 (5), p.e13180-n/a</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd on behalf of International Society of Neuropathology.</rights><rights>2023 The Authors. Brain Pathology published by John Wiley &amp; Sons Ltd on behalf of International Society of Neuropathology.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4440-d6e80171d443257eecb6dced41980546343992297dfc1a2bfcd5cee496b773c23</citedby><cites>FETCH-LOGICAL-c4440-d6e80171d443257eecb6dced41980546343992297dfc1a2bfcd5cee496b773c23</cites><orcidid>0000-0002-3768-5483 ; 0000-0003-3691-3605 ; 0000-0001-7002-8031 ; 0000-0003-0564-3630 ; 0000-0002-4199-6313 ; 0000-0003-1753-5469 ; 0000-0002-5351-3008 ; 0000-0002-3290-902X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467039/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467039/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,11567,27929,27930,45579,45580,46057,46481,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37331354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gonzalez‐Rodriguez, Melania</creatorcontrib><creatorcontrib>Villar‐Conde, Sandra</creatorcontrib><creatorcontrib>Astillero‐Lopez, Veronica</creatorcontrib><creatorcontrib>Villanueva‐Anguita, Patricia</creatorcontrib><creatorcontrib>Ubeda‐Banon, Isabel</creatorcontrib><creatorcontrib>Flores‐Cuadrado, Alicia</creatorcontrib><creatorcontrib>Martinez‐Marcos, Alino</creatorcontrib><creatorcontrib>Saiz‐Sanchez, Daniel</creatorcontrib><title>Human amygdala involvement in Alzheimer's disease revealed by stereological and dia‐PASEF analysis</title><title>Brain pathology (Zurich, Switzerland)</title><addtitle>Brain Pathol</addtitle><description>Alzheimer's disease (AD) is characterized by the accumulation of pathological amyloid‐β (Aβ) and Tau proteins. According to the prion‐like hypothesis, both proteins can seed and disseminate through brain regions through neural connections and glial cells. The amygdaloid complex (AC) is involved early in the disease, and its widespread connections with other brain regions indicate that it is a hub for propagating pathology. To characterize changes in the AC as well as the involvement of neuronal and glial cells in AD, a combined stereological and proteomic analysis was performed in non‐Alzheimer's disease and AD human samples. The synaptic alterations identified by proteomic data analysis could be related to the volume reduction observed in AD by the Cavalieri probe without neuronal loss. The pathological markers appeared in a gradient pattern with the medial region (cortical nucleus, Co) being more affected than lateral regions, suggesting the relevance of connections in the distribution of the pathology among different brain regions. Generalized astrogliosis was observed in every AC nucleus, likely related to deposits of pathological proteins. Astrocytes might mediate phagocytic microglial activation, whereas microglia might play a dual role since protective and toxic phenotypes have been described. These results highlight the potential participation of the amygdala in the disease spreading from/to olfactory areas, the temporal lobe and beyond. Proteomic data are available via ProteomeXchange with identifier PXD038322. A combined stereological and proteomic analysis revealed amygdala volume reduction linked to synaptic dysfunction in Alzheimer''s disease samples. The pathological markers gradient suggested the relevance of connections in the distribution of the pathology among different brain regions. Extended astrogliosis, likely as response to pathologic deposits, could mediate phagocytic microglial activation. Microglia might play a dual role since protective and toxic phenotypes have been described. In conclusion, amygdala might promote the spreading of pathology from/to olfactory areas, the temporal lobe and beyond.</description><subject>Alzheimer's disease</subject><subject>Amygdala</subject><subject>antioxidant protein 2 (AOP2)</subject><subject>Astrocytes</subject><subject>BM88 antigen (BM88)</subject><subject>Brain</subject><subject>calpactin II</subject><subject>calpactin‐1 heavy chain (CAL1H)</subject><subject>centaurin‐alpha‐1 (CENTA1)</subject><subject>Data analysis</subject><subject>endonexin II (ENX2)</subject><subject>Glial cells</subject><subject>Gliosis</subject><subject>Microglia</subject><subject>Neurodegenerative diseases</subject><subject>Neuroglia</subject><subject>Neuronal-glial interactions</subject><subject>nuclear chloride ion channel 27 (NCC27)</subject><subject>Pathology</subject><subject>Phagocytes</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Tau protein</subject><subject>Temporal lobe</subject><subject>β-Amyloid</subject><issn>1015-6305</issn><issn>1750-3639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kd9qFDEUh4NUbG298AVkoBfqxbTJ5N_kStbSWqFgQXsdMsnZbUpmsk12VsYrH8Fn9EnMum3RQnNzTjhfPk74IfSa4CNSznG3NEeEkhY_Q3tEclxTQdVO6THhtaCY76KXOd9gTJRQ_AXapZJSQjnbQ-587M1QmX5aOBNM5Yd1DGvoYViVvpqFH9fge0hvc-V8BpOhSrAGE8BV3VTlFSSIIS68NaEygyuU-f3z1-Xs6-lZuZswZZ8P0PO5CRle3dV9dHV2-u3kvL748unzyeyitowxXDsBLSaSOMZowyWA7YSz4BhRLeZMUEaVahol3dwS03Rz67gFYEp0UlLb0H30Yetdjl0P5emwSiboZfK9SZOOxuv_J4O_1ou41gQzITFVxfDuzpDi7Qh5pXufLYRgBohj1k3bSCE4ZrKgh4_Qmzim8uMNxVtBBMMb6v2WsinmnGD-sA3BehOeLuHpv-EV9s2_6z-Q92kV4HgLfPcBpqdN-uPlbKv8AyjNpOU</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Gonzalez‐Rodriguez, Melania</creator><creator>Villar‐Conde, Sandra</creator><creator>Astillero‐Lopez, Veronica</creator><creator>Villanueva‐Anguita, Patricia</creator><creator>Ubeda‐Banon, Isabel</creator><creator>Flores‐Cuadrado, Alicia</creator><creator>Martinez‐Marcos, Alino</creator><creator>Saiz‐Sanchez, Daniel</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3768-5483</orcidid><orcidid>https://orcid.org/0000-0003-3691-3605</orcidid><orcidid>https://orcid.org/0000-0001-7002-8031</orcidid><orcidid>https://orcid.org/0000-0003-0564-3630</orcidid><orcidid>https://orcid.org/0000-0002-4199-6313</orcidid><orcidid>https://orcid.org/0000-0003-1753-5469</orcidid><orcidid>https://orcid.org/0000-0002-5351-3008</orcidid><orcidid>https://orcid.org/0000-0002-3290-902X</orcidid></search><sort><creationdate>202309</creationdate><title>Human amygdala involvement in Alzheimer's disease revealed by stereological and dia‐PASEF analysis</title><author>Gonzalez‐Rodriguez, Melania ; Villar‐Conde, Sandra ; Astillero‐Lopez, Veronica ; Villanueva‐Anguita, Patricia ; Ubeda‐Banon, Isabel ; Flores‐Cuadrado, Alicia ; Martinez‐Marcos, Alino ; Saiz‐Sanchez, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4440-d6e80171d443257eecb6dced41980546343992297dfc1a2bfcd5cee496b773c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer's disease</topic><topic>Amygdala</topic><topic>antioxidant protein 2 (AOP2)</topic><topic>Astrocytes</topic><topic>BM88 antigen (BM88)</topic><topic>Brain</topic><topic>calpactin II</topic><topic>calpactin‐1 heavy chain (CAL1H)</topic><topic>centaurin‐alpha‐1 (CENTA1)</topic><topic>Data analysis</topic><topic>endonexin II (ENX2)</topic><topic>Glial cells</topic><topic>Gliosis</topic><topic>Microglia</topic><topic>Neurodegenerative diseases</topic><topic>Neuroglia</topic><topic>Neuronal-glial interactions</topic><topic>nuclear chloride ion channel 27 (NCC27)</topic><topic>Pathology</topic><topic>Phagocytes</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Tau protein</topic><topic>Temporal lobe</topic><topic>β-Amyloid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez‐Rodriguez, Melania</creatorcontrib><creatorcontrib>Villar‐Conde, Sandra</creatorcontrib><creatorcontrib>Astillero‐Lopez, Veronica</creatorcontrib><creatorcontrib>Villanueva‐Anguita, Patricia</creatorcontrib><creatorcontrib>Ubeda‐Banon, Isabel</creatorcontrib><creatorcontrib>Flores‐Cuadrado, Alicia</creatorcontrib><creatorcontrib>Martinez‐Marcos, Alino</creatorcontrib><creatorcontrib>Saiz‐Sanchez, Daniel</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain pathology (Zurich, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez‐Rodriguez, Melania</au><au>Villar‐Conde, Sandra</au><au>Astillero‐Lopez, Veronica</au><au>Villanueva‐Anguita, Patricia</au><au>Ubeda‐Banon, Isabel</au><au>Flores‐Cuadrado, Alicia</au><au>Martinez‐Marcos, Alino</au><au>Saiz‐Sanchez, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human amygdala involvement in Alzheimer's disease revealed by stereological and dia‐PASEF analysis</atitle><jtitle>Brain pathology (Zurich, Switzerland)</jtitle><addtitle>Brain Pathol</addtitle><date>2023-09</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><spage>e13180</spage><epage>n/a</epage><pages>e13180-n/a</pages><issn>1015-6305</issn><eissn>1750-3639</eissn><abstract>Alzheimer's disease (AD) is characterized by the accumulation of pathological amyloid‐β (Aβ) and Tau proteins. According to the prion‐like hypothesis, both proteins can seed and disseminate through brain regions through neural connections and glial cells. The amygdaloid complex (AC) is involved early in the disease, and its widespread connections with other brain regions indicate that it is a hub for propagating pathology. To characterize changes in the AC as well as the involvement of neuronal and glial cells in AD, a combined stereological and proteomic analysis was performed in non‐Alzheimer's disease and AD human samples. The synaptic alterations identified by proteomic data analysis could be related to the volume reduction observed in AD by the Cavalieri probe without neuronal loss. The pathological markers appeared in a gradient pattern with the medial region (cortical nucleus, Co) being more affected than lateral regions, suggesting the relevance of connections in the distribution of the pathology among different brain regions. Generalized astrogliosis was observed in every AC nucleus, likely related to deposits of pathological proteins. Astrocytes might mediate phagocytic microglial activation, whereas microglia might play a dual role since protective and toxic phenotypes have been described. These results highlight the potential participation of the amygdala in the disease spreading from/to olfactory areas, the temporal lobe and beyond. Proteomic data are available via ProteomeXchange with identifier PXD038322. A combined stereological and proteomic analysis revealed amygdala volume reduction linked to synaptic dysfunction in Alzheimer''s disease samples. The pathological markers gradient suggested the relevance of connections in the distribution of the pathology among different brain regions. Extended astrogliosis, likely as response to pathologic deposits, could mediate phagocytic microglial activation. Microglia might play a dual role since protective and toxic phenotypes have been described. In conclusion, amygdala might promote the spreading of pathology from/to olfactory areas, the temporal lobe and beyond.</abstract><cop>Switzerland</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37331354</pmid><doi>10.1111/bpa.13180</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-3768-5483</orcidid><orcidid>https://orcid.org/0000-0003-3691-3605</orcidid><orcidid>https://orcid.org/0000-0001-7002-8031</orcidid><orcidid>https://orcid.org/0000-0003-0564-3630</orcidid><orcidid>https://orcid.org/0000-0002-4199-6313</orcidid><orcidid>https://orcid.org/0000-0003-1753-5469</orcidid><orcidid>https://orcid.org/0000-0002-5351-3008</orcidid><orcidid>https://orcid.org/0000-0002-3290-902X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1015-6305
ispartof Brain pathology (Zurich, Switzerland), 2023-09, Vol.33 (5), p.e13180-n/a
issn 1015-6305
1750-3639
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10467039
source Open Access: PubMed Central; Wiley Online Library Journals; DOAJ Directory of Open Access Journals; Wiley Open Access; EZB Electronic Journals Library
subjects Alzheimer's disease
Amygdala
antioxidant protein 2 (AOP2)
Astrocytes
BM88 antigen (BM88)
Brain
calpactin II
calpactin‐1 heavy chain (CAL1H)
centaurin‐alpha‐1 (CENTA1)
Data analysis
endonexin II (ENX2)
Glial cells
Gliosis
Microglia
Neurodegenerative diseases
Neuroglia
Neuronal-glial interactions
nuclear chloride ion channel 27 (NCC27)
Pathology
Phagocytes
Phenotypes
Proteins
Proteomics
Tau protein
Temporal lobe
β-Amyloid
title Human amygdala involvement in Alzheimer's disease revealed by stereological and dia‐PASEF analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20amygdala%20involvement%20in%20Alzheimer's%20disease%20revealed%20by%20stereological%20and%20dia%E2%80%90PASEF%20analysis&rft.jtitle=Brain%20pathology%20(Zurich,%20Switzerland)&rft.au=Gonzalez%E2%80%90Rodriguez,%20Melania&rft.date=2023-09&rft.volume=33&rft.issue=5&rft.spage=e13180&rft.epage=n/a&rft.pages=e13180-n/a&rft.issn=1015-6305&rft.eissn=1750-3639&rft_id=info:doi/10.1111/bpa.13180&rft_dat=%3Cproquest_pubme%3E2858616407%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858616407&rft_id=info:pmid/37331354&rfr_iscdi=true