Artificial intelligence-assisted quantification of COVID-19 pneumonia burden from computed tomography improves prediction of adverse outcomes over visual scoring systems

We aimed to evaluate the effectiveness of utilizing artificial intelligence (AI) to quantify the extent of pneumonia from chest CT scans, and to determine its ability to predict clinical deterioration or mortality in patients admitted to the hospital with COVID-19 in comparison to semi-quantitative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of radiology 2023-09, Vol.96 (1149), p.20220180
Hauptverfasser: Grodecki, Kajetan, Killekar, Aditya, Simon, Judit, Lin, Andrew, Cadet, Sebastien, McElhinney, Priscilla, Chan, Cato, Williams, Michelle C, Pressman, Barry D, Julien, Peter, Li, Debiao, Chen, Peter, Gaibazzi, Nicola, Thakur, Udit, Mancini, Elisabetta, Agalbato, Cecilia, Munechika, Jiro, Matsumoto, Hidenari, Menè, Roberto, Parati, Gianfranco, Cernigliaro, Franco, Nerlekar, Nitesh, Torlasco, Camilla, Pontone, Gianluca, Maurovich-Horvat, Pal, Slomka, Piotr J, Dey, Damini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!