Experimental and Numerical Investigation of the Mechanical Properties of a Fiber-Reinforced Geopolymer Mortar Blast Resistant Panel

Geopolymer materials have excellent properties such as high strength, low thermal conductivity, fire resistance, acid and alkali resistance, and low carbon emissions. They can be used as protective engineering materials in places with explosion risks. At present, the common composite blast resistant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-08, Vol.15 (16), p.3440
Hauptverfasser: Chen, Chien-Chin, Tsai, Ying-Kuan, Lin, Yu-Kai, Ho, Pin-Hsuan, Kuo, Chang-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 3440
container_title Polymers
container_volume 15
creator Chen, Chien-Chin
Tsai, Ying-Kuan
Lin, Yu-Kai
Ho, Pin-Hsuan
Kuo, Chang-Yu
description Geopolymer materials have excellent properties such as high strength, low thermal conductivity, fire resistance, acid and alkali resistance, and low carbon emissions. They can be used as protective engineering materials in places with explosion risks. At present, the common composite blast resistant panel is in the form of a sandwich: the outer layer isgalvanized steel plate, and fiber cement board or calcium carbonate board is used as the inner layer material, as these boards have the advantages of easy installation, good fire resistance, and explosion resistance. This study investigates the effect of adding different types of fibers to geopolymer mortar on the mortar’s basic mechanical properties, such as compression strength, bending strength, and impact resistance. The explosive resistance of the fiber-reinforced geopolymer mortar blast resistant panels was evaluated through free-air explosion. In this paper, experimental procedures and numerical simulation have been performed to study the failure modes, maximum deflection, and dynamic response of the fiber-reinforced geopolymer mortar blast resistant panel under free-air explosion. The research results can provide a reference for the design and production of blast resistant panels.
doi_str_mv 10.3390/polym15163440
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10458215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762547158</galeid><sourcerecordid>A762547158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-36ed37f70a800a28796e033a31be77cb064c644023b1c6f2106fe4c6259f44293</originalsourceid><addsrcrecordid>eNpdUk1v1DAQjRCIVqVH7pa4cEnxV-zkhErVlkotVBWcLceZ7LpK7MV2qvbMH2d2t0IU-2B75s3zvKepqveMngjR0U-bOD3NrGFKSElfVYecalFLoejrf-4H1XHO9xSXbJRi-m11ILQSTHb6sPp9_riB5GcIxU7EhoF8W2YMOHxdhQfIxa9s8TGQOJKyBnIDbm3DLn-bItYWD3mbtOTC95DqO_BhjMnBQC4h7jqERG5iKjaRL5PNhdxB9rnYUMitDTC9q96Mdspw_HweVT8vzn-cfa2vv19enZ1e1060bamFgkHoUVPbUmp5qzsFVAgrWA9au54q6RT6wEXPnBo5o2oEDPGmG6XknTiqPu95N0s_w-BQc7KT2aB8m55MtN68zAS_Nqv4YBg613LWIMPHZ4YUfy1ojpl9djBNKCMu2fC20a3knFKEfvgPeh-XFFDfDiWxf7olPNmjVnYCszUOP3a4B5i9iwFGj_FTjSKkZk2LBfW-wKWYc4Lxb_uMmu1MmBczIf4AyfapyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857428705</pqid></control><display><type>article</type><title>Experimental and Numerical Investigation of the Mechanical Properties of a Fiber-Reinforced Geopolymer Mortar Blast Resistant Panel</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Chen, Chien-Chin ; Tsai, Ying-Kuan ; Lin, Yu-Kai ; Ho, Pin-Hsuan ; Kuo, Chang-Yu</creator><creatorcontrib>Chen, Chien-Chin ; Tsai, Ying-Kuan ; Lin, Yu-Kai ; Ho, Pin-Hsuan ; Kuo, Chang-Yu</creatorcontrib><description>Geopolymer materials have excellent properties such as high strength, low thermal conductivity, fire resistance, acid and alkali resistance, and low carbon emissions. They can be used as protective engineering materials in places with explosion risks. At present, the common composite blast resistant panel is in the form of a sandwich: the outer layer isgalvanized steel plate, and fiber cement board or calcium carbonate board is used as the inner layer material, as these boards have the advantages of easy installation, good fire resistance, and explosion resistance. This study investigates the effect of adding different types of fibers to geopolymer mortar on the mortar’s basic mechanical properties, such as compression strength, bending strength, and impact resistance. The explosive resistance of the fiber-reinforced geopolymer mortar blast resistant panels was evaluated through free-air explosion. In this paper, experimental procedures and numerical simulation have been performed to study the failure modes, maximum deflection, and dynamic response of the fiber-reinforced geopolymer mortar blast resistant panel under free-air explosion. The research results can provide a reference for the design and production of blast resistant panels.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym15163440</identifier><identifier>PMID: 37631497</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acid resistance ; Bend strength ; Blast resistance ; Blasting (explosive) ; Calcium carbonate ; Carbon fibers ; Cement ; Compressive strength ; Concrete ; Dynamic response ; Emissions ; Emissions (Pollution) ; Environmental impact ; Explosions ; Explosive compacting ; Explosive impact tests ; Failure modes ; Fiber reinforced materials ; Finite element analysis ; Fire resistance ; Galvanized steel ; Geopolymers ; Impact resistance ; Mechanical properties ; Mortars (material) ; Outdoor air quality ; Panels ; Particle size ; Polyethylene ; Raw materials ; Simulation methods ; Steel plates ; Steel production ; Thermal conductivity ; Thermal resistance</subject><ispartof>Polymers, 2023-08, Vol.15 (16), p.3440</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-36ed37f70a800a28796e033a31be77cb064c644023b1c6f2106fe4c6259f44293</cites><orcidid>0000-0001-7608-6910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458215/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458215/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Chen, Chien-Chin</creatorcontrib><creatorcontrib>Tsai, Ying-Kuan</creatorcontrib><creatorcontrib>Lin, Yu-Kai</creatorcontrib><creatorcontrib>Ho, Pin-Hsuan</creatorcontrib><creatorcontrib>Kuo, Chang-Yu</creatorcontrib><title>Experimental and Numerical Investigation of the Mechanical Properties of a Fiber-Reinforced Geopolymer Mortar Blast Resistant Panel</title><title>Polymers</title><description>Geopolymer materials have excellent properties such as high strength, low thermal conductivity, fire resistance, acid and alkali resistance, and low carbon emissions. They can be used as protective engineering materials in places with explosion risks. At present, the common composite blast resistant panel is in the form of a sandwich: the outer layer isgalvanized steel plate, and fiber cement board or calcium carbonate board is used as the inner layer material, as these boards have the advantages of easy installation, good fire resistance, and explosion resistance. This study investigates the effect of adding different types of fibers to geopolymer mortar on the mortar’s basic mechanical properties, such as compression strength, bending strength, and impact resistance. The explosive resistance of the fiber-reinforced geopolymer mortar blast resistant panels was evaluated through free-air explosion. In this paper, experimental procedures and numerical simulation have been performed to study the failure modes, maximum deflection, and dynamic response of the fiber-reinforced geopolymer mortar blast resistant panel under free-air explosion. The research results can provide a reference for the design and production of blast resistant panels.</description><subject>Acid resistance</subject><subject>Bend strength</subject><subject>Blast resistance</subject><subject>Blasting (explosive)</subject><subject>Calcium carbonate</subject><subject>Carbon fibers</subject><subject>Cement</subject><subject>Compressive strength</subject><subject>Concrete</subject><subject>Dynamic response</subject><subject>Emissions</subject><subject>Emissions (Pollution)</subject><subject>Environmental impact</subject><subject>Explosions</subject><subject>Explosive compacting</subject><subject>Explosive impact tests</subject><subject>Failure modes</subject><subject>Fiber reinforced materials</subject><subject>Finite element analysis</subject><subject>Fire resistance</subject><subject>Galvanized steel</subject><subject>Geopolymers</subject><subject>Impact resistance</subject><subject>Mechanical properties</subject><subject>Mortars (material)</subject><subject>Outdoor air quality</subject><subject>Panels</subject><subject>Particle size</subject><subject>Polyethylene</subject><subject>Raw materials</subject><subject>Simulation methods</subject><subject>Steel plates</subject><subject>Steel production</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUk1v1DAQjRCIVqVH7pa4cEnxV-zkhErVlkotVBWcLceZ7LpK7MV2qvbMH2d2t0IU-2B75s3zvKepqveMngjR0U-bOD3NrGFKSElfVYecalFLoejrf-4H1XHO9xSXbJRi-m11ILQSTHb6sPp9_riB5GcIxU7EhoF8W2YMOHxdhQfIxa9s8TGQOJKyBnIDbm3DLn-bItYWD3mbtOTC95DqO_BhjMnBQC4h7jqERG5iKjaRL5PNhdxB9rnYUMitDTC9q96Mdspw_HweVT8vzn-cfa2vv19enZ1e1060bamFgkHoUVPbUmp5qzsFVAgrWA9au54q6RT6wEXPnBo5o2oEDPGmG6XknTiqPu95N0s_w-BQc7KT2aB8m55MtN68zAS_Nqv4YBg613LWIMPHZ4YUfy1ojpl9djBNKCMu2fC20a3knFKEfvgPeh-XFFDfDiWxf7olPNmjVnYCszUOP3a4B5i9iwFGj_FTjSKkZk2LBfW-wKWYc4Lxb_uMmu1MmBczIf4AyfapyA</recordid><startdate>20230817</startdate><enddate>20230817</enddate><creator>Chen, Chien-Chin</creator><creator>Tsai, Ying-Kuan</creator><creator>Lin, Yu-Kai</creator><creator>Ho, Pin-Hsuan</creator><creator>Kuo, Chang-Yu</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7608-6910</orcidid></search><sort><creationdate>20230817</creationdate><title>Experimental and Numerical Investigation of the Mechanical Properties of a Fiber-Reinforced Geopolymer Mortar Blast Resistant Panel</title><author>Chen, Chien-Chin ; Tsai, Ying-Kuan ; Lin, Yu-Kai ; Ho, Pin-Hsuan ; Kuo, Chang-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-36ed37f70a800a28796e033a31be77cb064c644023b1c6f2106fe4c6259f44293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acid resistance</topic><topic>Bend strength</topic><topic>Blast resistance</topic><topic>Blasting (explosive)</topic><topic>Calcium carbonate</topic><topic>Carbon fibers</topic><topic>Cement</topic><topic>Compressive strength</topic><topic>Concrete</topic><topic>Dynamic response</topic><topic>Emissions</topic><topic>Emissions (Pollution)</topic><topic>Environmental impact</topic><topic>Explosions</topic><topic>Explosive compacting</topic><topic>Explosive impact tests</topic><topic>Failure modes</topic><topic>Fiber reinforced materials</topic><topic>Finite element analysis</topic><topic>Fire resistance</topic><topic>Galvanized steel</topic><topic>Geopolymers</topic><topic>Impact resistance</topic><topic>Mechanical properties</topic><topic>Mortars (material)</topic><topic>Outdoor air quality</topic><topic>Panels</topic><topic>Particle size</topic><topic>Polyethylene</topic><topic>Raw materials</topic><topic>Simulation methods</topic><topic>Steel plates</topic><topic>Steel production</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chien-Chin</creatorcontrib><creatorcontrib>Tsai, Ying-Kuan</creatorcontrib><creatorcontrib>Lin, Yu-Kai</creatorcontrib><creatorcontrib>Ho, Pin-Hsuan</creatorcontrib><creatorcontrib>Kuo, Chang-Yu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chien-Chin</au><au>Tsai, Ying-Kuan</au><au>Lin, Yu-Kai</au><au>Ho, Pin-Hsuan</au><au>Kuo, Chang-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and Numerical Investigation of the Mechanical Properties of a Fiber-Reinforced Geopolymer Mortar Blast Resistant Panel</atitle><jtitle>Polymers</jtitle><date>2023-08-17</date><risdate>2023</risdate><volume>15</volume><issue>16</issue><spage>3440</spage><pages>3440-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Geopolymer materials have excellent properties such as high strength, low thermal conductivity, fire resistance, acid and alkali resistance, and low carbon emissions. They can be used as protective engineering materials in places with explosion risks. At present, the common composite blast resistant panel is in the form of a sandwich: the outer layer isgalvanized steel plate, and fiber cement board or calcium carbonate board is used as the inner layer material, as these boards have the advantages of easy installation, good fire resistance, and explosion resistance. This study investigates the effect of adding different types of fibers to geopolymer mortar on the mortar’s basic mechanical properties, such as compression strength, bending strength, and impact resistance. The explosive resistance of the fiber-reinforced geopolymer mortar blast resistant panels was evaluated through free-air explosion. In this paper, experimental procedures and numerical simulation have been performed to study the failure modes, maximum deflection, and dynamic response of the fiber-reinforced geopolymer mortar blast resistant panel under free-air explosion. The research results can provide a reference for the design and production of blast resistant panels.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37631497</pmid><doi>10.3390/polym15163440</doi><orcidid>https://orcid.org/0000-0001-7608-6910</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2023-08, Vol.15 (16), p.3440
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10458215
source MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access
subjects Acid resistance
Bend strength
Blast resistance
Blasting (explosive)
Calcium carbonate
Carbon fibers
Cement
Compressive strength
Concrete
Dynamic response
Emissions
Emissions (Pollution)
Environmental impact
Explosions
Explosive compacting
Explosive impact tests
Failure modes
Fiber reinforced materials
Finite element analysis
Fire resistance
Galvanized steel
Geopolymers
Impact resistance
Mechanical properties
Mortars (material)
Outdoor air quality
Panels
Particle size
Polyethylene
Raw materials
Simulation methods
Steel plates
Steel production
Thermal conductivity
Thermal resistance
title Experimental and Numerical Investigation of the Mechanical Properties of a Fiber-Reinforced Geopolymer Mortar Blast Resistant Panel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20Numerical%20Investigation%20of%20the%20Mechanical%20Properties%20of%20a%20Fiber-Reinforced%20Geopolymer%20Mortar%20Blast%20Resistant%20Panel&rft.jtitle=Polymers&rft.au=Chen,%20Chien-Chin&rft.date=2023-08-17&rft.volume=15&rft.issue=16&rft.spage=3440&rft.pages=3440-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym15163440&rft_dat=%3Cgale_pubme%3EA762547158%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857428705&rft_id=info:pmid/37631497&rft_galeid=A762547158&rfr_iscdi=true