Lullaby: A Novel Algorithm to Extract Fetal QRS in Real Time Using Periodic Trend Feature

A fetal heart rate (fHR) is an important indicator for the monitoring of fetal cardiac health and development. The widely used method based on ultrasound; however, is not continuous and often requires an expert to perform; thus, it is mostly used in clinics during checkups. The advances in wearable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors letters 2022-09, Vol.6 (9), p.1-4
Hauptverfasser: Jilani, Daniel, Le, Tai, Etchells, Tim, Lau, Michael P. H., Cao, Hung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 9
container_start_page 1
container_title IEEE sensors letters
container_volume 6
creator Jilani, Daniel
Le, Tai
Etchells, Tim
Lau, Michael P. H.
Cao, Hung
description A fetal heart rate (fHR) is an important indicator for the monitoring of fetal cardiac health and development. The widely used method based on ultrasound; however, is not continuous and often requires an expert to perform; thus, it is mostly used in clinics during checkups. The advances in wearable technology have paved the way for the home assessment of the fHR via the extraction of the mother's abdominal electrocardiogram (aECG) acquired by novel patches. Several methods have been developed for such; however, the computation is either too slow for real-time monitoring or too heavy to be performed in a wearable. In this letter, we develop and validate the Lullaby algorithm-a novel method for fetal QRS extraction from the aECG. The results showed that Lullaby is almost seven times faster than the existing methods with a better F1-score of 0.815, holding promise to transform perinatal monitoring.
doi_str_mv 10.1109/LSENS.2022.3200072
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10456990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9863638</ieee_id><sourcerecordid>2708642800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-252eb7aad9003a181f279862fdbae4b9d670ce60c48fbce4405b89cd32329ad23</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EolXpF2gvlrhw2WX8J7HdC1pVW0BaFehuDz1ZjjPZukri4iQV_fZ42VUFnDySf-9p5j1CzhjMGQPzcbVeXq_nHDifCw4Air8ix1yqYsak4q__mo_I6TA8ZIRprkDAW3IkVCmUVOaY3K2mtnXV8wVd0Ov4hC1dtNuYwnjf0THS5a8xOT_SKxxdS3_crGno6Q3meRM6pLdD6Lf0O6YQ6-DpJmFfZ9aNU8J35E3j2gFPD-8Jub1abi6_zFbfPn-9XKxmXnI9znjBsVLO1QZAOKZZw5XRJW_qyqGsTF0q8FiCl7qpPEoJRaWNrwUX3LiaixPyae_7OFUd1h77vHJrH1PoXHq20QX7708f7u02PlkGsiiNgezw4eCQ4s8Jh9F2YfCYc-kxToPlutAStBQso-__Qx_ilPp8n83Z6jKfBDtDvqd8isOQsHnZhoHdtWf_tGd37dlDe1l0vhcFRHwR5ChEKbT4DZX0k1M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708642800</pqid></control><display><type>article</type><title>Lullaby: A Novel Algorithm to Extract Fetal QRS in Real Time Using Periodic Trend Feature</title><source>IEEE Electronic Library (IEL)</source><creator>Jilani, Daniel ; Le, Tai ; Etchells, Tim ; Lau, Michael P. H. ; Cao, Hung</creator><creatorcontrib>Jilani, Daniel ; Le, Tai ; Etchells, Tim ; Lau, Michael P. H. ; Cao, Hung</creatorcontrib><description>A fetal heart rate (fHR) is an important indicator for the monitoring of fetal cardiac health and development. The widely used method based on ultrasound; however, is not continuous and often requires an expert to perform; thus, it is mostly used in clinics during checkups. The advances in wearable technology have paved the way for the home assessment of the fHR via the extraction of the mother's abdominal electrocardiogram (aECG) acquired by novel patches. Several methods have been developed for such; however, the computation is either too slow for real-time monitoring or too heavy to be performed in a wearable. In this letter, we develop and validate the Lullaby algorithm-a novel method for fetal QRS extraction from the aECG. The results showed that Lullaby is almost seven times faster than the existing methods with a better F1-score of 0.815, holding promise to transform perinatal monitoring.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2022.3200072</identifier><identifier>PMID: 37637479</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>abdominal electrocardiogram (aECG) ; Algorithms ; biosignals ; Calibration ; Electrocardiography ; Feature extraction ; Fetal heart rate ; fetal heart rate (fHR) ; fetal QRS (fQRS) ; Heart rate ; periodic trend feature (PTF) ; Real time ; Real-time systems ; sensor applications ; Sensor signal processing ; Sensors ; signal processing ; Ultrasonic testing ; Wearable computers ; Wearable technology</subject><ispartof>IEEE sensors letters, 2022-09, Vol.6 (9), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-252eb7aad9003a181f279862fdbae4b9d670ce60c48fbce4405b89cd32329ad23</citedby><cites>FETCH-LOGICAL-c428t-252eb7aad9003a181f279862fdbae4b9d670ce60c48fbce4405b89cd32329ad23</cites><orcidid>0000-0002-1845-0064 ; 0000-0003-4197-7208 ; 0000-0002-9097-3978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9863638$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9863638$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jilani, Daniel</creatorcontrib><creatorcontrib>Le, Tai</creatorcontrib><creatorcontrib>Etchells, Tim</creatorcontrib><creatorcontrib>Lau, Michael P. H.</creatorcontrib><creatorcontrib>Cao, Hung</creatorcontrib><title>Lullaby: A Novel Algorithm to Extract Fetal QRS in Real Time Using Periodic Trend Feature</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>A fetal heart rate (fHR) is an important indicator for the monitoring of fetal cardiac health and development. The widely used method based on ultrasound; however, is not continuous and often requires an expert to perform; thus, it is mostly used in clinics during checkups. The advances in wearable technology have paved the way for the home assessment of the fHR via the extraction of the mother's abdominal electrocardiogram (aECG) acquired by novel patches. Several methods have been developed for such; however, the computation is either too slow for real-time monitoring or too heavy to be performed in a wearable. In this letter, we develop and validate the Lullaby algorithm-a novel method for fetal QRS extraction from the aECG. The results showed that Lullaby is almost seven times faster than the existing methods with a better F1-score of 0.815, holding promise to transform perinatal monitoring.</description><subject>abdominal electrocardiogram (aECG)</subject><subject>Algorithms</subject><subject>biosignals</subject><subject>Calibration</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Fetal heart rate</subject><subject>fetal heart rate (fHR)</subject><subject>fetal QRS (fQRS)</subject><subject>Heart rate</subject><subject>periodic trend feature (PTF)</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>sensor applications</subject><subject>Sensor signal processing</subject><subject>Sensors</subject><subject>signal processing</subject><subject>Ultrasonic testing</subject><subject>Wearable computers</subject><subject>Wearable technology</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU9v1DAQxS0EolXpF2gvlrhw2WX8J7HdC1pVW0BaFehuDz1ZjjPZukri4iQV_fZ42VUFnDySf-9p5j1CzhjMGQPzcbVeXq_nHDifCw4Air8ix1yqYsak4q__mo_I6TA8ZIRprkDAW3IkVCmUVOaY3K2mtnXV8wVd0Ov4hC1dtNuYwnjf0THS5a8xOT_SKxxdS3_crGno6Q3meRM6pLdD6Lf0O6YQ6-DpJmFfZ9aNU8J35E3j2gFPD-8Jub1abi6_zFbfPn-9XKxmXnI9znjBsVLO1QZAOKZZw5XRJW_qyqGsTF0q8FiCl7qpPEoJRaWNrwUX3LiaixPyae_7OFUd1h77vHJrH1PoXHq20QX7708f7u02PlkGsiiNgezw4eCQ4s8Jh9F2YfCYc-kxToPlutAStBQso-__Qx_ilPp8n83Z6jKfBDtDvqd8isOQsHnZhoHdtWf_tGd37dlDe1l0vhcFRHwR5ChEKbT4DZX0k1M</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Jilani, Daniel</creator><creator>Le, Tai</creator><creator>Etchells, Tim</creator><creator>Lau, Michael P. H.</creator><creator>Cao, Hung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1845-0064</orcidid><orcidid>https://orcid.org/0000-0003-4197-7208</orcidid><orcidid>https://orcid.org/0000-0002-9097-3978</orcidid></search><sort><creationdate>20220901</creationdate><title>Lullaby: A Novel Algorithm to Extract Fetal QRS in Real Time Using Periodic Trend Feature</title><author>Jilani, Daniel ; Le, Tai ; Etchells, Tim ; Lau, Michael P. H. ; Cao, Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-252eb7aad9003a181f279862fdbae4b9d670ce60c48fbce4405b89cd32329ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>abdominal electrocardiogram (aECG)</topic><topic>Algorithms</topic><topic>biosignals</topic><topic>Calibration</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Fetal heart rate</topic><topic>fetal heart rate (fHR)</topic><topic>fetal QRS (fQRS)</topic><topic>Heart rate</topic><topic>periodic trend feature (PTF)</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>sensor applications</topic><topic>Sensor signal processing</topic><topic>Sensors</topic><topic>signal processing</topic><topic>Ultrasonic testing</topic><topic>Wearable computers</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jilani, Daniel</creatorcontrib><creatorcontrib>Le, Tai</creatorcontrib><creatorcontrib>Etchells, Tim</creatorcontrib><creatorcontrib>Lau, Michael P. H.</creatorcontrib><creatorcontrib>Cao, Hung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jilani, Daniel</au><au>Le, Tai</au><au>Etchells, Tim</au><au>Lau, Michael P. H.</au><au>Cao, Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lullaby: A Novel Algorithm to Extract Fetal QRS in Real Time Using Periodic Trend Feature</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>6</volume><issue>9</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>A fetal heart rate (fHR) is an important indicator for the monitoring of fetal cardiac health and development. The widely used method based on ultrasound; however, is not continuous and often requires an expert to perform; thus, it is mostly used in clinics during checkups. The advances in wearable technology have paved the way for the home assessment of the fHR via the extraction of the mother's abdominal electrocardiogram (aECG) acquired by novel patches. Several methods have been developed for such; however, the computation is either too slow for real-time monitoring or too heavy to be performed in a wearable. In this letter, we develop and validate the Lullaby algorithm-a novel method for fetal QRS extraction from the aECG. The results showed that Lullaby is almost seven times faster than the existing methods with a better F1-score of 0.815, holding promise to transform perinatal monitoring.</abstract><cop>Piscataway</cop><pub>IEEE</pub><pmid>37637479</pmid><doi>10.1109/LSENS.2022.3200072</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1845-0064</orcidid><orcidid>https://orcid.org/0000-0003-4197-7208</orcidid><orcidid>https://orcid.org/0000-0002-9097-3978</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1472
ispartof IEEE sensors letters, 2022-09, Vol.6 (9), p.1-4
issn 2475-1472
2475-1472
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10456990
source IEEE Electronic Library (IEL)
subjects abdominal electrocardiogram (aECG)
Algorithms
biosignals
Calibration
Electrocardiography
Feature extraction
Fetal heart rate
fetal heart rate (fHR)
fetal QRS (fQRS)
Heart rate
periodic trend feature (PTF)
Real time
Real-time systems
sensor applications
Sensor signal processing
Sensors
signal processing
Ultrasonic testing
Wearable computers
Wearable technology
title Lullaby: A Novel Algorithm to Extract Fetal QRS in Real Time Using Periodic Trend Feature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lullaby:%20A%20Novel%20Algorithm%20to%20Extract%20Fetal%20QRS%20in%20Real%20Time%20Using%20Periodic%20Trend%20Feature&rft.jtitle=IEEE%20sensors%20letters&rft.au=Jilani,%20Daniel&rft.date=2022-09-01&rft.volume=6&rft.issue=9&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2022.3200072&rft_dat=%3Cproquest_RIE%3E2708642800%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708642800&rft_id=info:pmid/37637479&rft_ieee_id=9863638&rfr_iscdi=true