Metal–Ceramic Compatibility in Dental Restorations According to the Metallic Component Manufacturing Procedure
In terms of production technology, metal–ceramic systems for dental restorations comply with a concrete algorithm, the efficiency of which is always dependent on the applications for which they are intended. The first stage involves obtaining metal support, followed by firing the ceramic on the surf...
Gespeichert in:
Veröffentlicht in: | Materials 2023-08, Vol.16 (16), p.5556 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 5556 |
container_title | Materials |
container_volume | 16 |
creator | Dawod, Nazem Miculescu, Marian Antoniac, Iulian Vasile Miculescu, Florin Agop-Forna, Doriana |
description | In terms of production technology, metal–ceramic systems for dental restorations comply with a concrete algorithm, the efficiency of which is always dependent on the applications for which they are intended. The first stage involves obtaining metal support, followed by firing the ceramic on the surface of the metal to meet the list of functional and aesthetic requirements of a future restoration. The compatibility of the two materials—the metal component and the ceramic component—must be ensured in several respects: chemical compatibility, thermo–chemical compatibility, and mechanical compatibility. Thus, there is a need to simulate the thermal behavior of the metal–ceramic couple in its processing to achieve appropriate dental prostheses. In this study, three types of Co–Cr metal frames were manufactured using three different production technologies: conventional casting, milling (CAM), and selective laser melting (SLM). Composition analyses, scanning electron microscopy (SEM), and microstructural analyses of the metal–ceramic interface for each type of production technology, as well as the determination of the hardness and the thermal expansion coefficients of experimental materials and three-point bending tests, were carried out in this study. Considering all these aspects, we demonstrated the influence of the technology of producing the metallic part of the metal–ceramic bonding process in dental prostheses. |
doi_str_mv | 10.3390/ma16165556 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10456282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762481928</galeid><sourcerecordid>A762481928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-1693c2279b76ac7c3fde3647944ca3ae8dcd51ba00d6c585415e15d161f64bb3</originalsourceid><addsrcrecordid>eNptkt1qHCEUxyW0JCHNTZ9A6E0pbKLjx-hVWbZpG0hoKbkXR52NYUa3OlPIXd6hb9gn6dlkyUepXiie3_-v5xwRekvJCWOanI6WSiqFEHIPHVKt5YJqzl892x-g41pvCAzGqGr0PjpgrWy04u0h2lyGyQ5_7n6vQrFjdHiVx42dYheHON3imPCnkIDAP0KdcoFIThUvncvFx7TGU8bTdcD3LsNOnhNI8KVNc2_dNJct971kF_xcwhv0urdDDce79QhdfT67Wn1dXHz7cr5aXiwcF3RaUKmZa5pWd620rnWs94FJ3kI-zjIblHde0M4S4qUTSnAqAhUeatFL3nXsCH18sN3M3Ri8gxcVO5hNiaMttybbaF5GUrw26_zLUMKFbFQDDu93DiX_nCF7M8bqwjDYFPJcTaNEqzhVRAP67h_0Js8lQXr3FCeCCfpEre0QTEx9hovd1tQsoR9cUd0ooE7-Q8H0AdoDpe0jnL8QfHgQuJJrLaF_TJISs_0i5umLsL_KgK3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857405351</pqid></control><display><type>article</type><title>Metal–Ceramic Compatibility in Dental Restorations According to the Metallic Component Manufacturing Procedure</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dawod, Nazem ; Miculescu, Marian ; Antoniac, Iulian Vasile ; Miculescu, Florin ; Agop-Forna, Doriana</creator><creatorcontrib>Dawod, Nazem ; Miculescu, Marian ; Antoniac, Iulian Vasile ; Miculescu, Florin ; Agop-Forna, Doriana</creatorcontrib><description>In terms of production technology, metal–ceramic systems for dental restorations comply with a concrete algorithm, the efficiency of which is always dependent on the applications for which they are intended. The first stage involves obtaining metal support, followed by firing the ceramic on the surface of the metal to meet the list of functional and aesthetic requirements of a future restoration. The compatibility of the two materials—the metal component and the ceramic component—must be ensured in several respects: chemical compatibility, thermo–chemical compatibility, and mechanical compatibility. Thus, there is a need to simulate the thermal behavior of the metal–ceramic couple in its processing to achieve appropriate dental prostheses. In this study, three types of Co–Cr metal frames were manufactured using three different production technologies: conventional casting, milling (CAM), and selective laser melting (SLM). Composition analyses, scanning electron microscopy (SEM), and microstructural analyses of the metal–ceramic interface for each type of production technology, as well as the determination of the hardness and the thermal expansion coefficients of experimental materials and three-point bending tests, were carried out in this study. Considering all these aspects, we demonstrated the influence of the technology of producing the metallic part of the metal–ceramic bonding process in dental prostheses.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16165556</identifier><identifier>PMID: 37629847</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aesthetics ; Algorithms ; Alloys ; Biocompatibility ; Ceramic bonding ; Ceramic materials ; Ceramics ; Cermets ; Chemical bonds ; Chemical compatibility ; Chromium ; Implants, Artificial ; Laser beam melting ; Metals ; Patient satisfaction ; Porcelain ; Prostheses ; Prosthesis ; Residual stress ; Temperature ; Thermal expansion ; Thermal properties ; Thermal simulation ; Thermodynamic properties</subject><ispartof>Materials, 2023-08, Vol.16 (16), p.5556</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-1693c2279b76ac7c3fde3647944ca3ae8dcd51ba00d6c585415e15d161f64bb3</citedby><cites>FETCH-LOGICAL-c451t-1693c2279b76ac7c3fde3647944ca3ae8dcd51ba00d6c585415e15d161f64bb3</cites><orcidid>0000-0001-6757-5616 ; 0000-0002-2723-6713 ; 0000-0003-0112-3494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456282/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456282/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Dawod, Nazem</creatorcontrib><creatorcontrib>Miculescu, Marian</creatorcontrib><creatorcontrib>Antoniac, Iulian Vasile</creatorcontrib><creatorcontrib>Miculescu, Florin</creatorcontrib><creatorcontrib>Agop-Forna, Doriana</creatorcontrib><title>Metal–Ceramic Compatibility in Dental Restorations According to the Metallic Component Manufacturing Procedure</title><title>Materials</title><description>In terms of production technology, metal–ceramic systems for dental restorations comply with a concrete algorithm, the efficiency of which is always dependent on the applications for which they are intended. The first stage involves obtaining metal support, followed by firing the ceramic on the surface of the metal to meet the list of functional and aesthetic requirements of a future restoration. The compatibility of the two materials—the metal component and the ceramic component—must be ensured in several respects: chemical compatibility, thermo–chemical compatibility, and mechanical compatibility. Thus, there is a need to simulate the thermal behavior of the metal–ceramic couple in its processing to achieve appropriate dental prostheses. In this study, three types of Co–Cr metal frames were manufactured using three different production technologies: conventional casting, milling (CAM), and selective laser melting (SLM). Composition analyses, scanning electron microscopy (SEM), and microstructural analyses of the metal–ceramic interface for each type of production technology, as well as the determination of the hardness and the thermal expansion coefficients of experimental materials and three-point bending tests, were carried out in this study. Considering all these aspects, we demonstrated the influence of the technology of producing the metallic part of the metal–ceramic bonding process in dental prostheses.</description><subject>Aesthetics</subject><subject>Algorithms</subject><subject>Alloys</subject><subject>Biocompatibility</subject><subject>Ceramic bonding</subject><subject>Ceramic materials</subject><subject>Ceramics</subject><subject>Cermets</subject><subject>Chemical bonds</subject><subject>Chemical compatibility</subject><subject>Chromium</subject><subject>Implants, Artificial</subject><subject>Laser beam melting</subject><subject>Metals</subject><subject>Patient satisfaction</subject><subject>Porcelain</subject><subject>Prostheses</subject><subject>Prosthesis</subject><subject>Residual stress</subject><subject>Temperature</subject><subject>Thermal expansion</subject><subject>Thermal properties</subject><subject>Thermal simulation</subject><subject>Thermodynamic properties</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkt1qHCEUxyW0JCHNTZ9A6E0pbKLjx-hVWbZpG0hoKbkXR52NYUa3OlPIXd6hb9gn6dlkyUepXiie3_-v5xwRekvJCWOanI6WSiqFEHIPHVKt5YJqzl892x-g41pvCAzGqGr0PjpgrWy04u0h2lyGyQ5_7n6vQrFjdHiVx42dYheHON3imPCnkIDAP0KdcoFIThUvncvFx7TGU8bTdcD3LsNOnhNI8KVNc2_dNJct971kF_xcwhv0urdDDce79QhdfT67Wn1dXHz7cr5aXiwcF3RaUKmZa5pWd620rnWs94FJ3kI-zjIblHde0M4S4qUTSnAqAhUeatFL3nXsCH18sN3M3Ri8gxcVO5hNiaMttybbaF5GUrw26_zLUMKFbFQDDu93DiX_nCF7M8bqwjDYFPJcTaNEqzhVRAP67h_0Js8lQXr3FCeCCfpEre0QTEx9hovd1tQsoR9cUd0ooE7-Q8H0AdoDpe0jnL8QfHgQuJJrLaF_TJISs_0i5umLsL_KgK3A</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Dawod, Nazem</creator><creator>Miculescu, Marian</creator><creator>Antoniac, Iulian Vasile</creator><creator>Miculescu, Florin</creator><creator>Agop-Forna, Doriana</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6757-5616</orcidid><orcidid>https://orcid.org/0000-0002-2723-6713</orcidid><orcidid>https://orcid.org/0000-0003-0112-3494</orcidid></search><sort><creationdate>20230801</creationdate><title>Metal–Ceramic Compatibility in Dental Restorations According to the Metallic Component Manufacturing Procedure</title><author>Dawod, Nazem ; Miculescu, Marian ; Antoniac, Iulian Vasile ; Miculescu, Florin ; Agop-Forna, Doriana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-1693c2279b76ac7c3fde3647944ca3ae8dcd51ba00d6c585415e15d161f64bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aesthetics</topic><topic>Algorithms</topic><topic>Alloys</topic><topic>Biocompatibility</topic><topic>Ceramic bonding</topic><topic>Ceramic materials</topic><topic>Ceramics</topic><topic>Cermets</topic><topic>Chemical bonds</topic><topic>Chemical compatibility</topic><topic>Chromium</topic><topic>Implants, Artificial</topic><topic>Laser beam melting</topic><topic>Metals</topic><topic>Patient satisfaction</topic><topic>Porcelain</topic><topic>Prostheses</topic><topic>Prosthesis</topic><topic>Residual stress</topic><topic>Temperature</topic><topic>Thermal expansion</topic><topic>Thermal properties</topic><topic>Thermal simulation</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawod, Nazem</creatorcontrib><creatorcontrib>Miculescu, Marian</creatorcontrib><creatorcontrib>Antoniac, Iulian Vasile</creatorcontrib><creatorcontrib>Miculescu, Florin</creatorcontrib><creatorcontrib>Agop-Forna, Doriana</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawod, Nazem</au><au>Miculescu, Marian</au><au>Antoniac, Iulian Vasile</au><au>Miculescu, Florin</au><au>Agop-Forna, Doriana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–Ceramic Compatibility in Dental Restorations According to the Metallic Component Manufacturing Procedure</atitle><jtitle>Materials</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>16</volume><issue>16</issue><spage>5556</spage><pages>5556-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In terms of production technology, metal–ceramic systems for dental restorations comply with a concrete algorithm, the efficiency of which is always dependent on the applications for which they are intended. The first stage involves obtaining metal support, followed by firing the ceramic on the surface of the metal to meet the list of functional and aesthetic requirements of a future restoration. The compatibility of the two materials—the metal component and the ceramic component—must be ensured in several respects: chemical compatibility, thermo–chemical compatibility, and mechanical compatibility. Thus, there is a need to simulate the thermal behavior of the metal–ceramic couple in its processing to achieve appropriate dental prostheses. In this study, three types of Co–Cr metal frames were manufactured using three different production technologies: conventional casting, milling (CAM), and selective laser melting (SLM). Composition analyses, scanning electron microscopy (SEM), and microstructural analyses of the metal–ceramic interface for each type of production technology, as well as the determination of the hardness and the thermal expansion coefficients of experimental materials and three-point bending tests, were carried out in this study. Considering all these aspects, we demonstrated the influence of the technology of producing the metallic part of the metal–ceramic bonding process in dental prostheses.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37629847</pmid><doi>10.3390/ma16165556</doi><orcidid>https://orcid.org/0000-0001-6757-5616</orcidid><orcidid>https://orcid.org/0000-0002-2723-6713</orcidid><orcidid>https://orcid.org/0000-0003-0112-3494</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-08, Vol.16 (16), p.5556 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10456282 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aesthetics Algorithms Alloys Biocompatibility Ceramic bonding Ceramic materials Ceramics Cermets Chemical bonds Chemical compatibility Chromium Implants, Artificial Laser beam melting Metals Patient satisfaction Porcelain Prostheses Prosthesis Residual stress Temperature Thermal expansion Thermal properties Thermal simulation Thermodynamic properties |
title | Metal–Ceramic Compatibility in Dental Restorations According to the Metallic Component Manufacturing Procedure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93Ceramic%20Compatibility%20in%20Dental%20Restorations%20According%20to%20the%20Metallic%20Component%20Manufacturing%20Procedure&rft.jtitle=Materials&rft.au=Dawod,%20Nazem&rft.date=2023-08-01&rft.volume=16&rft.issue=16&rft.spage=5556&rft.pages=5556-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16165556&rft_dat=%3Cgale_pubme%3EA762481928%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857405351&rft_id=info:pmid/37629847&rft_galeid=A762481928&rfr_iscdi=true |