Metal–Ceramic Compatibility in Dental Restorations According to the Metallic Component Manufacturing Procedure

In terms of production technology, metal–ceramic systems for dental restorations comply with a concrete algorithm, the efficiency of which is always dependent on the applications for which they are intended. The first stage involves obtaining metal support, followed by firing the ceramic on the surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-08, Vol.16 (16), p.5556
Hauptverfasser: Dawod, Nazem, Miculescu, Marian, Antoniac, Iulian Vasile, Miculescu, Florin, Agop-Forna, Doriana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 5556
container_title Materials
container_volume 16
creator Dawod, Nazem
Miculescu, Marian
Antoniac, Iulian Vasile
Miculescu, Florin
Agop-Forna, Doriana
description In terms of production technology, metal–ceramic systems for dental restorations comply with a concrete algorithm, the efficiency of which is always dependent on the applications for which they are intended. The first stage involves obtaining metal support, followed by firing the ceramic on the surface of the metal to meet the list of functional and aesthetic requirements of a future restoration. The compatibility of the two materials—the metal component and the ceramic component—must be ensured in several respects: chemical compatibility, thermo–chemical compatibility, and mechanical compatibility. Thus, there is a need to simulate the thermal behavior of the metal–ceramic couple in its processing to achieve appropriate dental prostheses. In this study, three types of Co–Cr metal frames were manufactured using three different production technologies: conventional casting, milling (CAM), and selective laser melting (SLM). Composition analyses, scanning electron microscopy (SEM), and microstructural analyses of the metal–ceramic interface for each type of production technology, as well as the determination of the hardness and the thermal expansion coefficients of experimental materials and three-point bending tests, were carried out in this study. Considering all these aspects, we demonstrated the influence of the technology of producing the metallic part of the metal–ceramic bonding process in dental prostheses.
doi_str_mv 10.3390/ma16165556
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10456282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762481928</galeid><sourcerecordid>A762481928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-1693c2279b76ac7c3fde3647944ca3ae8dcd51ba00d6c585415e15d161f64bb3</originalsourceid><addsrcrecordid>eNptkt1qHCEUxyW0JCHNTZ9A6E0pbKLjx-hVWbZpG0hoKbkXR52NYUa3OlPIXd6hb9gn6dlkyUepXiie3_-v5xwRekvJCWOanI6WSiqFEHIPHVKt5YJqzl892x-g41pvCAzGqGr0PjpgrWy04u0h2lyGyQ5_7n6vQrFjdHiVx42dYheHON3imPCnkIDAP0KdcoFIThUvncvFx7TGU8bTdcD3LsNOnhNI8KVNc2_dNJct971kF_xcwhv0urdDDce79QhdfT67Wn1dXHz7cr5aXiwcF3RaUKmZa5pWd620rnWs94FJ3kI-zjIblHde0M4S4qUTSnAqAhUeatFL3nXsCH18sN3M3Ri8gxcVO5hNiaMttybbaF5GUrw26_zLUMKFbFQDDu93DiX_nCF7M8bqwjDYFPJcTaNEqzhVRAP67h_0Js8lQXr3FCeCCfpEre0QTEx9hovd1tQsoR9cUd0ooE7-Q8H0AdoDpe0jnL8QfHgQuJJrLaF_TJISs_0i5umLsL_KgK3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857405351</pqid></control><display><type>article</type><title>Metal–Ceramic Compatibility in Dental Restorations According to the Metallic Component Manufacturing Procedure</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dawod, Nazem ; Miculescu, Marian ; Antoniac, Iulian Vasile ; Miculescu, Florin ; Agop-Forna, Doriana</creator><creatorcontrib>Dawod, Nazem ; Miculescu, Marian ; Antoniac, Iulian Vasile ; Miculescu, Florin ; Agop-Forna, Doriana</creatorcontrib><description>In terms of production technology, metal–ceramic systems for dental restorations comply with a concrete algorithm, the efficiency of which is always dependent on the applications for which they are intended. The first stage involves obtaining metal support, followed by firing the ceramic on the surface of the metal to meet the list of functional and aesthetic requirements of a future restoration. The compatibility of the two materials—the metal component and the ceramic component—must be ensured in several respects: chemical compatibility, thermo–chemical compatibility, and mechanical compatibility. Thus, there is a need to simulate the thermal behavior of the metal–ceramic couple in its processing to achieve appropriate dental prostheses. In this study, three types of Co–Cr metal frames were manufactured using three different production technologies: conventional casting, milling (CAM), and selective laser melting (SLM). Composition analyses, scanning electron microscopy (SEM), and microstructural analyses of the metal–ceramic interface for each type of production technology, as well as the determination of the hardness and the thermal expansion coefficients of experimental materials and three-point bending tests, were carried out in this study. Considering all these aspects, we demonstrated the influence of the technology of producing the metallic part of the metal–ceramic bonding process in dental prostheses.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16165556</identifier><identifier>PMID: 37629847</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aesthetics ; Algorithms ; Alloys ; Biocompatibility ; Ceramic bonding ; Ceramic materials ; Ceramics ; Cermets ; Chemical bonds ; Chemical compatibility ; Chromium ; Implants, Artificial ; Laser beam melting ; Metals ; Patient satisfaction ; Porcelain ; Prostheses ; Prosthesis ; Residual stress ; Temperature ; Thermal expansion ; Thermal properties ; Thermal simulation ; Thermodynamic properties</subject><ispartof>Materials, 2023-08, Vol.16 (16), p.5556</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-1693c2279b76ac7c3fde3647944ca3ae8dcd51ba00d6c585415e15d161f64bb3</citedby><cites>FETCH-LOGICAL-c451t-1693c2279b76ac7c3fde3647944ca3ae8dcd51ba00d6c585415e15d161f64bb3</cites><orcidid>0000-0001-6757-5616 ; 0000-0002-2723-6713 ; 0000-0003-0112-3494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456282/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456282/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Dawod, Nazem</creatorcontrib><creatorcontrib>Miculescu, Marian</creatorcontrib><creatorcontrib>Antoniac, Iulian Vasile</creatorcontrib><creatorcontrib>Miculescu, Florin</creatorcontrib><creatorcontrib>Agop-Forna, Doriana</creatorcontrib><title>Metal–Ceramic Compatibility in Dental Restorations According to the Metallic Component Manufacturing Procedure</title><title>Materials</title><description>In terms of production technology, metal–ceramic systems for dental restorations comply with a concrete algorithm, the efficiency of which is always dependent on the applications for which they are intended. The first stage involves obtaining metal support, followed by firing the ceramic on the surface of the metal to meet the list of functional and aesthetic requirements of a future restoration. The compatibility of the two materials—the metal component and the ceramic component—must be ensured in several respects: chemical compatibility, thermo–chemical compatibility, and mechanical compatibility. Thus, there is a need to simulate the thermal behavior of the metal–ceramic couple in its processing to achieve appropriate dental prostheses. In this study, three types of Co–Cr metal frames were manufactured using three different production technologies: conventional casting, milling (CAM), and selective laser melting (SLM). Composition analyses, scanning electron microscopy (SEM), and microstructural analyses of the metal–ceramic interface for each type of production technology, as well as the determination of the hardness and the thermal expansion coefficients of experimental materials and three-point bending tests, were carried out in this study. Considering all these aspects, we demonstrated the influence of the technology of producing the metallic part of the metal–ceramic bonding process in dental prostheses.</description><subject>Aesthetics</subject><subject>Algorithms</subject><subject>Alloys</subject><subject>Biocompatibility</subject><subject>Ceramic bonding</subject><subject>Ceramic materials</subject><subject>Ceramics</subject><subject>Cermets</subject><subject>Chemical bonds</subject><subject>Chemical compatibility</subject><subject>Chromium</subject><subject>Implants, Artificial</subject><subject>Laser beam melting</subject><subject>Metals</subject><subject>Patient satisfaction</subject><subject>Porcelain</subject><subject>Prostheses</subject><subject>Prosthesis</subject><subject>Residual stress</subject><subject>Temperature</subject><subject>Thermal expansion</subject><subject>Thermal properties</subject><subject>Thermal simulation</subject><subject>Thermodynamic properties</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkt1qHCEUxyW0JCHNTZ9A6E0pbKLjx-hVWbZpG0hoKbkXR52NYUa3OlPIXd6hb9gn6dlkyUepXiie3_-v5xwRekvJCWOanI6WSiqFEHIPHVKt5YJqzl892x-g41pvCAzGqGr0PjpgrWy04u0h2lyGyQ5_7n6vQrFjdHiVx42dYheHON3imPCnkIDAP0KdcoFIThUvncvFx7TGU8bTdcD3LsNOnhNI8KVNc2_dNJct971kF_xcwhv0urdDDce79QhdfT67Wn1dXHz7cr5aXiwcF3RaUKmZa5pWd620rnWs94FJ3kI-zjIblHde0M4S4qUTSnAqAhUeatFL3nXsCH18sN3M3Ri8gxcVO5hNiaMttybbaF5GUrw26_zLUMKFbFQDDu93DiX_nCF7M8bqwjDYFPJcTaNEqzhVRAP67h_0Js8lQXr3FCeCCfpEre0QTEx9hovd1tQsoR9cUd0ooE7-Q8H0AdoDpe0jnL8QfHgQuJJrLaF_TJISs_0i5umLsL_KgK3A</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Dawod, Nazem</creator><creator>Miculescu, Marian</creator><creator>Antoniac, Iulian Vasile</creator><creator>Miculescu, Florin</creator><creator>Agop-Forna, Doriana</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6757-5616</orcidid><orcidid>https://orcid.org/0000-0002-2723-6713</orcidid><orcidid>https://orcid.org/0000-0003-0112-3494</orcidid></search><sort><creationdate>20230801</creationdate><title>Metal–Ceramic Compatibility in Dental Restorations According to the Metallic Component Manufacturing Procedure</title><author>Dawod, Nazem ; Miculescu, Marian ; Antoniac, Iulian Vasile ; Miculescu, Florin ; Agop-Forna, Doriana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-1693c2279b76ac7c3fde3647944ca3ae8dcd51ba00d6c585415e15d161f64bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aesthetics</topic><topic>Algorithms</topic><topic>Alloys</topic><topic>Biocompatibility</topic><topic>Ceramic bonding</topic><topic>Ceramic materials</topic><topic>Ceramics</topic><topic>Cermets</topic><topic>Chemical bonds</topic><topic>Chemical compatibility</topic><topic>Chromium</topic><topic>Implants, Artificial</topic><topic>Laser beam melting</topic><topic>Metals</topic><topic>Patient satisfaction</topic><topic>Porcelain</topic><topic>Prostheses</topic><topic>Prosthesis</topic><topic>Residual stress</topic><topic>Temperature</topic><topic>Thermal expansion</topic><topic>Thermal properties</topic><topic>Thermal simulation</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawod, Nazem</creatorcontrib><creatorcontrib>Miculescu, Marian</creatorcontrib><creatorcontrib>Antoniac, Iulian Vasile</creatorcontrib><creatorcontrib>Miculescu, Florin</creatorcontrib><creatorcontrib>Agop-Forna, Doriana</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawod, Nazem</au><au>Miculescu, Marian</au><au>Antoniac, Iulian Vasile</au><au>Miculescu, Florin</au><au>Agop-Forna, Doriana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–Ceramic Compatibility in Dental Restorations According to the Metallic Component Manufacturing Procedure</atitle><jtitle>Materials</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>16</volume><issue>16</issue><spage>5556</spage><pages>5556-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In terms of production technology, metal–ceramic systems for dental restorations comply with a concrete algorithm, the efficiency of which is always dependent on the applications for which they are intended. The first stage involves obtaining metal support, followed by firing the ceramic on the surface of the metal to meet the list of functional and aesthetic requirements of a future restoration. The compatibility of the two materials—the metal component and the ceramic component—must be ensured in several respects: chemical compatibility, thermo–chemical compatibility, and mechanical compatibility. Thus, there is a need to simulate the thermal behavior of the metal–ceramic couple in its processing to achieve appropriate dental prostheses. In this study, three types of Co–Cr metal frames were manufactured using three different production technologies: conventional casting, milling (CAM), and selective laser melting (SLM). Composition analyses, scanning electron microscopy (SEM), and microstructural analyses of the metal–ceramic interface for each type of production technology, as well as the determination of the hardness and the thermal expansion coefficients of experimental materials and three-point bending tests, were carried out in this study. Considering all these aspects, we demonstrated the influence of the technology of producing the metallic part of the metal–ceramic bonding process in dental prostheses.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37629847</pmid><doi>10.3390/ma16165556</doi><orcidid>https://orcid.org/0000-0001-6757-5616</orcidid><orcidid>https://orcid.org/0000-0002-2723-6713</orcidid><orcidid>https://orcid.org/0000-0003-0112-3494</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-08, Vol.16 (16), p.5556
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10456282
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aesthetics
Algorithms
Alloys
Biocompatibility
Ceramic bonding
Ceramic materials
Ceramics
Cermets
Chemical bonds
Chemical compatibility
Chromium
Implants, Artificial
Laser beam melting
Metals
Patient satisfaction
Porcelain
Prostheses
Prosthesis
Residual stress
Temperature
Thermal expansion
Thermal properties
Thermal simulation
Thermodynamic properties
title Metal–Ceramic Compatibility in Dental Restorations According to the Metallic Component Manufacturing Procedure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93Ceramic%20Compatibility%20in%20Dental%20Restorations%20According%20to%20the%20Metallic%20Component%20Manufacturing%20Procedure&rft.jtitle=Materials&rft.au=Dawod,%20Nazem&rft.date=2023-08-01&rft.volume=16&rft.issue=16&rft.spage=5556&rft.pages=5556-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16165556&rft_dat=%3Cgale_pubme%3EA762481928%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857405351&rft_id=info:pmid/37629847&rft_galeid=A762481928&rfr_iscdi=true