Towards Evidence-Based Implementation of Pharmacogenomics in Southern Africa: Comorbidities and Polypharmacy Profiles across Diseases
Pharmacogenomics may improve patient care by guiding drug selection and dosing; however, this requires prior knowledge of the pharmacogenomics of drugs commonly used in a specific setting. The aim of this study was to identify a preliminary set of pharmacogenetic variants important in Southern Afric...
Gespeichert in:
Veröffentlicht in: | Journal of personalized medicine 2023-07, Vol.13 (8), p.1185 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1185 |
container_title | Journal of personalized medicine |
container_volume | 13 |
creator | Soko, Nyarai Desiree Muyambo, Sarudzai Dandara, Michelle T. L Kampira, Elizabeth Blom, Dirk Jones, Erika S. W Rayner, Brian Shamley, Delva Sinxadi, Phumla Dandara, Collet |
description | Pharmacogenomics may improve patient care by guiding drug selection and dosing; however, this requires prior knowledge of the pharmacogenomics of drugs commonly used in a specific setting. The aim of this study was to identify a preliminary set of pharmacogenetic variants important in Southern Africa. We describe comorbidities in 3997 patients from Malawi, South Africa, and Zimbabwe. These patient cohorts were included in pharmacogenomic studies of anticoagulation, dyslipidemia, hypertension, HIV and breast cancer. The 20 topmost prescribed drugs in this population were identified. Using the literature, a list of pharmacogenes vital in the response to the top 20 drugs was constructed leading to drug–gene pairs potentially informative in translation of pharmacogenomics. The most reported morbidity was hypertension (58.4%), making antihypertensives the most prescribed drugs, particularly amlodipine. Dyslipidemia occurred in 31.5% of the participants, and statins were the most frequently prescribed as cholesterol-lowering drugs. HIV was reported in 20.3% of the study participants, with lamivudine/stavudine/efavirenz being the most prescribed antiretroviral combination. Based on these data, pharmacogenes of immediate interest in Southern African populations include ABCB1, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, SLC22A1, SLCO1B1 and UGT1A1. Variants in these genes are a good starting point for pharmacogenomic translation programs in Southern Africa. |
doi_str_mv | 10.3390/jpm13081185 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10455498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762479617</galeid><sourcerecordid>A762479617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-e91fef4a9116fa8327b6e70c52e1af18cf76e14dd72a4a5fcdaa2a446780b7ed3</originalsourceid><addsrcrecordid>eNptUlFrFDEQXkSxpfbJPxDwRZCtySbZZH2R86xaKHhgfQ65ZHKXYzdZk93K_QD_t7le0VbMPGRgvu8bvpmpqpcEX1Da4be7cSAUS0Ikf1KdNljwmrGmffogP6nOc97h8iRvmhY_r06oaBvKaHta_bqJP3WyGV3eegvBQP1BZ7Doahh7GCBMevIxoOjQaqvToE3cQIiDNxn5gL7FedpCCmjhkjf6HVrGIaa1t37ykJEOFq1ivx-P1D1apeh8f6iYFHNGH32G0i6_qJ453Wc4v__Pqu-fLm-WX-rrr5-vlovr2jDOpho64sAx3RHSOi1pI9YtCGx4A0Q7Io0TLRBmrWg009wZq3XJWCskXguw9Kx6f9Qd5_UA1hR_SfdqTH7Qaa-i9upxJfit2sRbRTDjnHWyKLy-V0jxxwx5UoPPBvpeB4hzVo3kQjJOCC7QV_9Ad3FOofi7Q-GOCib_oja6B-WDi6WxOYiqRdkSE11LREFd_AdVwkLZRQxwGOtjwpsj4W7QCdwfkwSrw-WoB5dDfwPfSrak</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857093748</pqid></control><display><type>article</type><title>Towards Evidence-Based Implementation of Pharmacogenomics in Southern Africa: Comorbidities and Polypharmacy Profiles across Diseases</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Soko, Nyarai Desiree ; Muyambo, Sarudzai ; Dandara, Michelle T. L ; Kampira, Elizabeth ; Blom, Dirk ; Jones, Erika S. W ; Rayner, Brian ; Shamley, Delva ; Sinxadi, Phumla ; Dandara, Collet</creator><creatorcontrib>Soko, Nyarai Desiree ; Muyambo, Sarudzai ; Dandara, Michelle T. L ; Kampira, Elizabeth ; Blom, Dirk ; Jones, Erika S. W ; Rayner, Brian ; Shamley, Delva ; Sinxadi, Phumla ; Dandara, Collet</creatorcontrib><description>Pharmacogenomics may improve patient care by guiding drug selection and dosing; however, this requires prior knowledge of the pharmacogenomics of drugs commonly used in a specific setting. The aim of this study was to identify a preliminary set of pharmacogenetic variants important in Southern Africa. We describe comorbidities in 3997 patients from Malawi, South Africa, and Zimbabwe. These patient cohorts were included in pharmacogenomic studies of anticoagulation, dyslipidemia, hypertension, HIV and breast cancer. The 20 topmost prescribed drugs in this population were identified. Using the literature, a list of pharmacogenes vital in the response to the top 20 drugs was constructed leading to drug–gene pairs potentially informative in translation of pharmacogenomics. The most reported morbidity was hypertension (58.4%), making antihypertensives the most prescribed drugs, particularly amlodipine. Dyslipidemia occurred in 31.5% of the participants, and statins were the most frequently prescribed as cholesterol-lowering drugs. HIV was reported in 20.3% of the study participants, with lamivudine/stavudine/efavirenz being the most prescribed antiretroviral combination. Based on these data, pharmacogenes of immediate interest in Southern African populations include ABCB1, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, SLC22A1, SLCO1B1 and UGT1A1. Variants in these genes are a good starting point for pharmacogenomic translation programs in Southern Africa.</description><identifier>ISSN: 2075-4426</identifier><identifier>EISSN: 2075-4426</identifier><identifier>DOI: 10.3390/jpm13081185</identifier><identifier>PMID: 37623436</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acquired immune deficiency syndrome ; AIDS ; Antidiabetics ; Antihypertensives ; Breast cancer ; Cancer ; Cancer therapies ; Cholesterol ; Comorbidity ; CYP2D6 protein ; Cytochrome P450 ; Diabetes ; Disease ; Drugs ; Dyslipidemia ; Efavirenz ; Genomics ; Highly active antiretroviral therapy ; HIV ; Human immunodeficiency virus ; Hydrochlorothiazide ; Hypertension ; Lamivudine ; Metabolic disorders ; Morbidity ; Oncology, Experimental ; Patient compliance ; Patients ; Pharmacogenetics ; Pharmacogenomics ; Precision medicine ; Prescribing ; Prescription drugs ; Statins ; Stavudine ; Translation</subject><ispartof>Journal of personalized medicine, 2023-07, Vol.13 (8), p.1185</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-e91fef4a9116fa8327b6e70c52e1af18cf76e14dd72a4a5fcdaa2a446780b7ed3</citedby><cites>FETCH-LOGICAL-c454t-e91fef4a9116fa8327b6e70c52e1af18cf76e14dd72a4a5fcdaa2a446780b7ed3</cites><orcidid>0000-0002-5925-4895 ; 0000-0003-2355-6629 ; 0000-0003-1250-8293 ; 0000-0002-5848-0006 ; 0000-0002-0167-9591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10455498/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10455498/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Soko, Nyarai Desiree</creatorcontrib><creatorcontrib>Muyambo, Sarudzai</creatorcontrib><creatorcontrib>Dandara, Michelle T. L</creatorcontrib><creatorcontrib>Kampira, Elizabeth</creatorcontrib><creatorcontrib>Blom, Dirk</creatorcontrib><creatorcontrib>Jones, Erika S. W</creatorcontrib><creatorcontrib>Rayner, Brian</creatorcontrib><creatorcontrib>Shamley, Delva</creatorcontrib><creatorcontrib>Sinxadi, Phumla</creatorcontrib><creatorcontrib>Dandara, Collet</creatorcontrib><title>Towards Evidence-Based Implementation of Pharmacogenomics in Southern Africa: Comorbidities and Polypharmacy Profiles across Diseases</title><title>Journal of personalized medicine</title><description>Pharmacogenomics may improve patient care by guiding drug selection and dosing; however, this requires prior knowledge of the pharmacogenomics of drugs commonly used in a specific setting. The aim of this study was to identify a preliminary set of pharmacogenetic variants important in Southern Africa. We describe comorbidities in 3997 patients from Malawi, South Africa, and Zimbabwe. These patient cohorts were included in pharmacogenomic studies of anticoagulation, dyslipidemia, hypertension, HIV and breast cancer. The 20 topmost prescribed drugs in this population were identified. Using the literature, a list of pharmacogenes vital in the response to the top 20 drugs was constructed leading to drug–gene pairs potentially informative in translation of pharmacogenomics. The most reported morbidity was hypertension (58.4%), making antihypertensives the most prescribed drugs, particularly amlodipine. Dyslipidemia occurred in 31.5% of the participants, and statins were the most frequently prescribed as cholesterol-lowering drugs. HIV was reported in 20.3% of the study participants, with lamivudine/stavudine/efavirenz being the most prescribed antiretroviral combination. Based on these data, pharmacogenes of immediate interest in Southern African populations include ABCB1, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, SLC22A1, SLCO1B1 and UGT1A1. Variants in these genes are a good starting point for pharmacogenomic translation programs in Southern Africa.</description><subject>Acquired immune deficiency syndrome</subject><subject>AIDS</subject><subject>Antidiabetics</subject><subject>Antihypertensives</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cholesterol</subject><subject>Comorbidity</subject><subject>CYP2D6 protein</subject><subject>Cytochrome P450</subject><subject>Diabetes</subject><subject>Disease</subject><subject>Drugs</subject><subject>Dyslipidemia</subject><subject>Efavirenz</subject><subject>Genomics</subject><subject>Highly active antiretroviral therapy</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Hydrochlorothiazide</subject><subject>Hypertension</subject><subject>Lamivudine</subject><subject>Metabolic disorders</subject><subject>Morbidity</subject><subject>Oncology, Experimental</subject><subject>Patient compliance</subject><subject>Patients</subject><subject>Pharmacogenetics</subject><subject>Pharmacogenomics</subject><subject>Precision medicine</subject><subject>Prescribing</subject><subject>Prescription drugs</subject><subject>Statins</subject><subject>Stavudine</subject><subject>Translation</subject><issn>2075-4426</issn><issn>2075-4426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUlFrFDEQXkSxpfbJPxDwRZCtySbZZH2R86xaKHhgfQ65ZHKXYzdZk93K_QD_t7le0VbMPGRgvu8bvpmpqpcEX1Da4be7cSAUS0Ikf1KdNljwmrGmffogP6nOc97h8iRvmhY_r06oaBvKaHta_bqJP3WyGV3eegvBQP1BZ7Doahh7GCBMevIxoOjQaqvToE3cQIiDNxn5gL7FedpCCmjhkjf6HVrGIaa1t37ykJEOFq1ivx-P1D1apeh8f6iYFHNGH32G0i6_qJ453Wc4v__Pqu-fLm-WX-rrr5-vlovr2jDOpho64sAx3RHSOi1pI9YtCGx4A0Q7Io0TLRBmrWg009wZq3XJWCskXguw9Kx6f9Qd5_UA1hR_SfdqTH7Qaa-i9upxJfit2sRbRTDjnHWyKLy-V0jxxwx5UoPPBvpeB4hzVo3kQjJOCC7QV_9Ad3FOofi7Q-GOCib_oja6B-WDi6WxOYiqRdkSE11LREFd_AdVwkLZRQxwGOtjwpsj4W7QCdwfkwSrw-WoB5dDfwPfSrak</recordid><startdate>20230726</startdate><enddate>20230726</enddate><creator>Soko, Nyarai Desiree</creator><creator>Muyambo, Sarudzai</creator><creator>Dandara, Michelle T. L</creator><creator>Kampira, Elizabeth</creator><creator>Blom, Dirk</creator><creator>Jones, Erika S. W</creator><creator>Rayner, Brian</creator><creator>Shamley, Delva</creator><creator>Sinxadi, Phumla</creator><creator>Dandara, Collet</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5925-4895</orcidid><orcidid>https://orcid.org/0000-0003-2355-6629</orcidid><orcidid>https://orcid.org/0000-0003-1250-8293</orcidid><orcidid>https://orcid.org/0000-0002-5848-0006</orcidid><orcidid>https://orcid.org/0000-0002-0167-9591</orcidid></search><sort><creationdate>20230726</creationdate><title>Towards Evidence-Based Implementation of Pharmacogenomics in Southern Africa: Comorbidities and Polypharmacy Profiles across Diseases</title><author>Soko, Nyarai Desiree ; Muyambo, Sarudzai ; Dandara, Michelle T. L ; Kampira, Elizabeth ; Blom, Dirk ; Jones, Erika S. W ; Rayner, Brian ; Shamley, Delva ; Sinxadi, Phumla ; Dandara, Collet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-e91fef4a9116fa8327b6e70c52e1af18cf76e14dd72a4a5fcdaa2a446780b7ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acquired immune deficiency syndrome</topic><topic>AIDS</topic><topic>Antidiabetics</topic><topic>Antihypertensives</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cholesterol</topic><topic>Comorbidity</topic><topic>CYP2D6 protein</topic><topic>Cytochrome P450</topic><topic>Diabetes</topic><topic>Disease</topic><topic>Drugs</topic><topic>Dyslipidemia</topic><topic>Efavirenz</topic><topic>Genomics</topic><topic>Highly active antiretroviral therapy</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Hydrochlorothiazide</topic><topic>Hypertension</topic><topic>Lamivudine</topic><topic>Metabolic disorders</topic><topic>Morbidity</topic><topic>Oncology, Experimental</topic><topic>Patient compliance</topic><topic>Patients</topic><topic>Pharmacogenetics</topic><topic>Pharmacogenomics</topic><topic>Precision medicine</topic><topic>Prescribing</topic><topic>Prescription drugs</topic><topic>Statins</topic><topic>Stavudine</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soko, Nyarai Desiree</creatorcontrib><creatorcontrib>Muyambo, Sarudzai</creatorcontrib><creatorcontrib>Dandara, Michelle T. L</creatorcontrib><creatorcontrib>Kampira, Elizabeth</creatorcontrib><creatorcontrib>Blom, Dirk</creatorcontrib><creatorcontrib>Jones, Erika S. W</creatorcontrib><creatorcontrib>Rayner, Brian</creatorcontrib><creatorcontrib>Shamley, Delva</creatorcontrib><creatorcontrib>Sinxadi, Phumla</creatorcontrib><creatorcontrib>Dandara, Collet</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of personalized medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soko, Nyarai Desiree</au><au>Muyambo, Sarudzai</au><au>Dandara, Michelle T. L</au><au>Kampira, Elizabeth</au><au>Blom, Dirk</au><au>Jones, Erika S. W</au><au>Rayner, Brian</au><au>Shamley, Delva</au><au>Sinxadi, Phumla</au><au>Dandara, Collet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Evidence-Based Implementation of Pharmacogenomics in Southern Africa: Comorbidities and Polypharmacy Profiles across Diseases</atitle><jtitle>Journal of personalized medicine</jtitle><date>2023-07-26</date><risdate>2023</risdate><volume>13</volume><issue>8</issue><spage>1185</spage><pages>1185-</pages><issn>2075-4426</issn><eissn>2075-4426</eissn><abstract>Pharmacogenomics may improve patient care by guiding drug selection and dosing; however, this requires prior knowledge of the pharmacogenomics of drugs commonly used in a specific setting. The aim of this study was to identify a preliminary set of pharmacogenetic variants important in Southern Africa. We describe comorbidities in 3997 patients from Malawi, South Africa, and Zimbabwe. These patient cohorts were included in pharmacogenomic studies of anticoagulation, dyslipidemia, hypertension, HIV and breast cancer. The 20 topmost prescribed drugs in this population were identified. Using the literature, a list of pharmacogenes vital in the response to the top 20 drugs was constructed leading to drug–gene pairs potentially informative in translation of pharmacogenomics. The most reported morbidity was hypertension (58.4%), making antihypertensives the most prescribed drugs, particularly amlodipine. Dyslipidemia occurred in 31.5% of the participants, and statins were the most frequently prescribed as cholesterol-lowering drugs. HIV was reported in 20.3% of the study participants, with lamivudine/stavudine/efavirenz being the most prescribed antiretroviral combination. Based on these data, pharmacogenes of immediate interest in Southern African populations include ABCB1, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, SLC22A1, SLCO1B1 and UGT1A1. Variants in these genes are a good starting point for pharmacogenomic translation programs in Southern Africa.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37623436</pmid><doi>10.3390/jpm13081185</doi><orcidid>https://orcid.org/0000-0002-5925-4895</orcidid><orcidid>https://orcid.org/0000-0003-2355-6629</orcidid><orcidid>https://orcid.org/0000-0003-1250-8293</orcidid><orcidid>https://orcid.org/0000-0002-5848-0006</orcidid><orcidid>https://orcid.org/0000-0002-0167-9591</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4426 |
ispartof | Journal of personalized medicine, 2023-07, Vol.13 (8), p.1185 |
issn | 2075-4426 2075-4426 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10455498 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Acquired immune deficiency syndrome AIDS Antidiabetics Antihypertensives Breast cancer Cancer Cancer therapies Cholesterol Comorbidity CYP2D6 protein Cytochrome P450 Diabetes Disease Drugs Dyslipidemia Efavirenz Genomics Highly active antiretroviral therapy HIV Human immunodeficiency virus Hydrochlorothiazide Hypertension Lamivudine Metabolic disorders Morbidity Oncology, Experimental Patient compliance Patients Pharmacogenetics Pharmacogenomics Precision medicine Prescribing Prescription drugs Statins Stavudine Translation |
title | Towards Evidence-Based Implementation of Pharmacogenomics in Southern Africa: Comorbidities and Polypharmacy Profiles across Diseases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Evidence-Based%20Implementation%20of%20Pharmacogenomics%20in%20Southern%20Africa:%20Comorbidities%20and%20Polypharmacy%20Profiles%20across%20Diseases&rft.jtitle=Journal%20of%20personalized%20medicine&rft.au=Soko,%20Nyarai%20Desiree&rft.date=2023-07-26&rft.volume=13&rft.issue=8&rft.spage=1185&rft.pages=1185-&rft.issn=2075-4426&rft.eissn=2075-4426&rft_id=info:doi/10.3390/jpm13081185&rft_dat=%3Cgale_pubme%3EA762479617%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857093748&rft_id=info:pmid/37623436&rft_galeid=A762479617&rfr_iscdi=true |