Springback angle prediction of circular metal tube considering the interference of cross-sectional distortion in mandrel-less rotary draw bending
The springback directly affects the forming accuracy and quality of metal bent-tube, and accurate springback prediction is the key to the springback compensation and control. This paper investigates the springback of mandrel-less rotary draw bending (MLRDB) of circular metal tubes, and an innovative...
Gespeichert in:
Veröffentlicht in: | Science progress (1916) 2021-01, Vol.104 (1), p.1-30 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Science progress (1916) |
container_volume | 104 |
creator | Zhou, Huifang Zhang, Shuyou Qiu, Lemiao Wang, Zili |
description | The springback directly affects the forming accuracy and quality of metal bent-tube, and accurate springback prediction is the key to the springback compensation and control. This paper investigates the springback of mandrel-less rotary draw bending (MLRDB) of circular metal tubes, and an innovative method, springback angle prediction considering the interference of cross-sectional distortion (IoCSD-SAP), is proposed. The digit decomposition condition variational auto-encoder generative adversarial network (D2CVAE-GAN) is developed to augment the data samples. Considering the nonlinear interference of the cross-sectional distortion on springback, auxiliary extended radial basis function (AE-RBF) is proposed. It establishes the mapping relationship between the characteristic parameters and cross-sectional distortion. By extracting the information encode of cross-sectional distortion as the condition input, this model realizes the condition prediction of springback angle. Taking MLRDB of 6060-T6 Al-alloy circular tube as a case study, the proposed method, IoCSD-SAP, is verified. According to the experimental results, the mean absolute percentage error (MAPE) for the springback angle of our proposed method is 4.73%, and three different analytical models are 38.92%, 14.39%, and 14.22%, respectively. It can be seen that our proposed method significantly improves the prediction accuracy of springback angle. For the springback angle prediction of circular metal tube in MLRDB, the data augmentation can effectively reduce the generalization error and improve the prediction accuracy. The nonlinear interference of the cross-sectional distortion on springback should be taken into account to improve the accuracy and robustness of the springback prediction model. |
doi_str_mv | 10.1177/0036850420984303 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10455028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27042692</jstor_id><sage_id>10.1177_0036850420984303</sage_id><sourcerecordid>27042692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-3b924a7f07d6e5b2baf8d4ec84b2dc270a8dcae280ea64de115ba8ba1390ace13</originalsourceid><addsrcrecordid>eNp9kTuP1DAURi0EYoeFngZkiYYm4GfsVGi14iWtRAHUkR83sx4Se7ATED-Df4wzswywBZWLe75j-34IPabkBaVKvSSEt1oSwUinBSf8DtowIlSjaMvvos06btb5GXpQyo4QKmmr76MzzitdoQ36-XGfQ9xa475gE7cj4H0GH9wcUsRpwC5kt4wm4wlmM-J5sYBdiiV4WHN4vgYc4gx5gAzRwSGTUylNgYOkhnwoc8oHY4h4MtFnGJsRSsE5zSb_wD6b79hC9FX5EN0bzFjg0c15jj6_ef3p8l1z9eHt-8uLq8YJLeeG244JowaifAvSMmsG7QU4LSzzjilitHcGmCZgWuGBUmmNtobyjhgHlJ-jV0fvfrETeAdxzmbs6zqm-qQ-mdD_O4nhut-mbz0lQkrCdDU8vzHk9HWBMvdTKA7G0URIS-mZUIpJrVpS0We30F1acl1OpSTRkmouu0qRI3XYYIbh9BpK-rXw_nbhNfL071-cAr8brkBzBIrZwp9b_yN8cuR3a2knX12oYG3H-C_DKcEh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508518359</pqid></control><display><type>article</type><title>Springback angle prediction of circular metal tube considering the interference of cross-sectional distortion in mandrel-less rotary draw bending</title><source>DOAJ Directory of Open Access Journals</source><source>Sage Journals GOLD Open Access 2024</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhou, Huifang ; Zhang, Shuyou ; Qiu, Lemiao ; Wang, Zili</creator><creatorcontrib>Zhou, Huifang ; Zhang, Shuyou ; Qiu, Lemiao ; Wang, Zili</creatorcontrib><description>The springback directly affects the forming accuracy and quality of metal bent-tube, and accurate springback prediction is the key to the springback compensation and control. This paper investigates the springback of mandrel-less rotary draw bending (MLRDB) of circular metal tubes, and an innovative method, springback angle prediction considering the interference of cross-sectional distortion (IoCSD-SAP), is proposed. The digit decomposition condition variational auto-encoder generative adversarial network (D2CVAE-GAN) is developed to augment the data samples. Considering the nonlinear interference of the cross-sectional distortion on springback, auxiliary extended radial basis function (AE-RBF) is proposed. It establishes the mapping relationship between the characteristic parameters and cross-sectional distortion. By extracting the information encode of cross-sectional distortion as the condition input, this model realizes the condition prediction of springback angle. Taking MLRDB of 6060-T6 Al-alloy circular tube as a case study, the proposed method, IoCSD-SAP, is verified. According to the experimental results, the mean absolute percentage error (MAPE) for the springback angle of our proposed method is 4.73%, and three different analytical models are 38.92%, 14.39%, and 14.22%, respectively. It can be seen that our proposed method significantly improves the prediction accuracy of springback angle. For the springback angle prediction of circular metal tube in MLRDB, the data augmentation can effectively reduce the generalization error and improve the prediction accuracy. The nonlinear interference of the cross-sectional distortion on springback should be taken into account to improve the accuracy and robustness of the springback prediction model.</description><identifier>ISSN: 0036-8504</identifier><identifier>EISSN: 2047-7163</identifier><identifier>DOI: 10.1177/0036850420984303</identifier><identifier>PMID: 33430716</identifier><language>eng</language><publisher>London, England: Sage Publications, Ltd</publisher><subject>Accuracy ; Circular tubes ; Cross-sections ; Distortion ; Draw bending ; Interference ; Mathematical models ; Metals ; Prediction models ; Radial basis function ; Springback</subject><ispartof>Science progress (1916), 2021-01, Vol.104 (1), p.1-30</ispartof><rights>The Author(s) 2021</rights><rights>2021. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/ ) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage ). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021 2021 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-3b924a7f07d6e5b2baf8d4ec84b2dc270a8dcae280ea64de115ba8ba1390ace13</citedby><cites>FETCH-LOGICAL-c485t-3b924a7f07d6e5b2baf8d4ec84b2dc270a8dcae280ea64de115ba8ba1390ace13</cites><orcidid>0000-0001-9358-0099 ; 0000-0003-2198-534X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10455028/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10455028/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,21945,27830,27901,27902,44921,45309,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33430716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Huifang</creatorcontrib><creatorcontrib>Zhang, Shuyou</creatorcontrib><creatorcontrib>Qiu, Lemiao</creatorcontrib><creatorcontrib>Wang, Zili</creatorcontrib><title>Springback angle prediction of circular metal tube considering the interference of cross-sectional distortion in mandrel-less rotary draw bending</title><title>Science progress (1916)</title><addtitle>Sci Prog</addtitle><description>The springback directly affects the forming accuracy and quality of metal bent-tube, and accurate springback prediction is the key to the springback compensation and control. This paper investigates the springback of mandrel-less rotary draw bending (MLRDB) of circular metal tubes, and an innovative method, springback angle prediction considering the interference of cross-sectional distortion (IoCSD-SAP), is proposed. The digit decomposition condition variational auto-encoder generative adversarial network (D2CVAE-GAN) is developed to augment the data samples. Considering the nonlinear interference of the cross-sectional distortion on springback, auxiliary extended radial basis function (AE-RBF) is proposed. It establishes the mapping relationship between the characteristic parameters and cross-sectional distortion. By extracting the information encode of cross-sectional distortion as the condition input, this model realizes the condition prediction of springback angle. Taking MLRDB of 6060-T6 Al-alloy circular tube as a case study, the proposed method, IoCSD-SAP, is verified. According to the experimental results, the mean absolute percentage error (MAPE) for the springback angle of our proposed method is 4.73%, and three different analytical models are 38.92%, 14.39%, and 14.22%, respectively. It can be seen that our proposed method significantly improves the prediction accuracy of springback angle. For the springback angle prediction of circular metal tube in MLRDB, the data augmentation can effectively reduce the generalization error and improve the prediction accuracy. The nonlinear interference of the cross-sectional distortion on springback should be taken into account to improve the accuracy and robustness of the springback prediction model.</description><subject>Accuracy</subject><subject>Circular tubes</subject><subject>Cross-sections</subject><subject>Distortion</subject><subject>Draw bending</subject><subject>Interference</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>Prediction models</subject><subject>Radial basis function</subject><subject>Springback</subject><issn>0036-8504</issn><issn>2047-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp9kTuP1DAURi0EYoeFngZkiYYm4GfsVGi14iWtRAHUkR83sx4Se7ATED-Df4wzswywBZWLe75j-34IPabkBaVKvSSEt1oSwUinBSf8DtowIlSjaMvvos06btb5GXpQyo4QKmmr76MzzitdoQ36-XGfQ9xa475gE7cj4H0GH9wcUsRpwC5kt4wm4wlmM-J5sYBdiiV4WHN4vgYc4gx5gAzRwSGTUylNgYOkhnwoc8oHY4h4MtFnGJsRSsE5zSb_wD6b79hC9FX5EN0bzFjg0c15jj6_ef3p8l1z9eHt-8uLq8YJLeeG244JowaifAvSMmsG7QU4LSzzjilitHcGmCZgWuGBUmmNtobyjhgHlJ-jV0fvfrETeAdxzmbs6zqm-qQ-mdD_O4nhut-mbz0lQkrCdDU8vzHk9HWBMvdTKA7G0URIS-mZUIpJrVpS0We30F1acl1OpSTRkmouu0qRI3XYYIbh9BpK-rXw_nbhNfL071-cAr8brkBzBIrZwp9b_yN8cuR3a2knX12oYG3H-C_DKcEh</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zhou, Huifang</creator><creator>Zhang, Shuyou</creator><creator>Qiu, Lemiao</creator><creator>Wang, Zili</creator><general>Sage Publications, Ltd</general><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9358-0099</orcidid><orcidid>https://orcid.org/0000-0003-2198-534X</orcidid></search><sort><creationdate>20210101</creationdate><title>Springback angle prediction of circular metal tube considering the interference of cross-sectional distortion in mandrel-less rotary draw bending</title><author>Zhou, Huifang ; Zhang, Shuyou ; Qiu, Lemiao ; Wang, Zili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-3b924a7f07d6e5b2baf8d4ec84b2dc270a8dcae280ea64de115ba8ba1390ace13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Circular tubes</topic><topic>Cross-sections</topic><topic>Distortion</topic><topic>Draw bending</topic><topic>Interference</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>Prediction models</topic><topic>Radial basis function</topic><topic>Springback</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Huifang</creatorcontrib><creatorcontrib>Zhang, Shuyou</creatorcontrib><creatorcontrib>Qiu, Lemiao</creatorcontrib><creatorcontrib>Wang, Zili</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science progress (1916)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Huifang</au><au>Zhang, Shuyou</au><au>Qiu, Lemiao</au><au>Wang, Zili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Springback angle prediction of circular metal tube considering the interference of cross-sectional distortion in mandrel-less rotary draw bending</atitle><jtitle>Science progress (1916)</jtitle><addtitle>Sci Prog</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>104</volume><issue>1</issue><spage>1</spage><epage>30</epage><pages>1-30</pages><issn>0036-8504</issn><eissn>2047-7163</eissn><abstract>The springback directly affects the forming accuracy and quality of metal bent-tube, and accurate springback prediction is the key to the springback compensation and control. This paper investigates the springback of mandrel-less rotary draw bending (MLRDB) of circular metal tubes, and an innovative method, springback angle prediction considering the interference of cross-sectional distortion (IoCSD-SAP), is proposed. The digit decomposition condition variational auto-encoder generative adversarial network (D2CVAE-GAN) is developed to augment the data samples. Considering the nonlinear interference of the cross-sectional distortion on springback, auxiliary extended radial basis function (AE-RBF) is proposed. It establishes the mapping relationship between the characteristic parameters and cross-sectional distortion. By extracting the information encode of cross-sectional distortion as the condition input, this model realizes the condition prediction of springback angle. Taking MLRDB of 6060-T6 Al-alloy circular tube as a case study, the proposed method, IoCSD-SAP, is verified. According to the experimental results, the mean absolute percentage error (MAPE) for the springback angle of our proposed method is 4.73%, and three different analytical models are 38.92%, 14.39%, and 14.22%, respectively. It can be seen that our proposed method significantly improves the prediction accuracy of springback angle. For the springback angle prediction of circular metal tube in MLRDB, the data augmentation can effectively reduce the generalization error and improve the prediction accuracy. The nonlinear interference of the cross-sectional distortion on springback should be taken into account to improve the accuracy and robustness of the springback prediction model.</abstract><cop>London, England</cop><pub>Sage Publications, Ltd</pub><pmid>33430716</pmid><doi>10.1177/0036850420984303</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-9358-0099</orcidid><orcidid>https://orcid.org/0000-0003-2198-534X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8504 |
ispartof | Science progress (1916), 2021-01, Vol.104 (1), p.1-30 |
issn | 0036-8504 2047-7163 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10455028 |
source | DOAJ Directory of Open Access Journals; Sage Journals GOLD Open Access 2024; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Accuracy Circular tubes Cross-sections Distortion Draw bending Interference Mathematical models Metals Prediction models Radial basis function Springback |
title | Springback angle prediction of circular metal tube considering the interference of cross-sectional distortion in mandrel-less rotary draw bending |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A42%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Springback%20angle%20prediction%20of%20circular%20metal%20tube%20considering%20the%20interference%20of%20cross-sectional%20distortion%20in%20mandrel-less%20rotary%20draw%20bending&rft.jtitle=Science%20progress%20(1916)&rft.au=Zhou,%20Huifang&rft.date=2021-01-01&rft.volume=104&rft.issue=1&rft.spage=1&rft.epage=30&rft.pages=1-30&rft.issn=0036-8504&rft.eissn=2047-7163&rft_id=info:doi/10.1177/0036850420984303&rft_dat=%3Cjstor_pubme%3E27042692%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508518359&rft_id=info:pmid/33430716&rft_jstor_id=27042692&rft_sage_id=10.1177_0036850420984303&rfr_iscdi=true |