Interplay of Impaired Cellular Bioenergetics and Autophagy in PMM2-CDG

Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2023-08, Vol.14 (8), p.1585
Hauptverfasser: Ligezka, Anna N, Budhraja, Rohit, Nishiyama, Yurika, Fiesel, Fabienne C, Preston, Graeme, Edmondson, Andrew, Ranatunga, Wasantha, Van Hove, Johan L K, Watzlawik, Jens O, Springer, Wolfdieter, Pandey, Akhilesh, Morava, Eva, Kozicz, Tamas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1585
container_title Genes
container_volume 14
creator Ligezka, Anna N
Budhraja, Rohit
Nishiyama, Yurika
Fiesel, Fabienne C
Preston, Graeme
Edmondson, Andrew
Ranatunga, Wasantha
Van Hove, Johan L K
Watzlawik, Jens O
Springer, Wolfdieter
Pandey, Akhilesh
Morava, Eva
Kozicz, Tamas
description Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.
doi_str_mv 10.3390/genes14081585
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10454768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762475208</galeid><sourcerecordid>A762475208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-194ec378cedd6aa780d79346c88833a3e816ab71708fd6b793068689a4b2ce9e3</originalsourceid><addsrcrecordid>eNptkcFv2yAUxtG0qa26HHudLO2yi1sMGPBpytI1jdSqO2xnRPCzS2WDB3al_PclS9cmVeEA4v3e9_jeQ-iswOeUVviiBQexYFgWpSw_oBOCBc0ZI-XHvfsxmsX4gNNimGBcHqFjKjiRnPITdLVyI4Sh05vMN9mqH7QNUGcL6Lqp0yH7YX2qEVoYrYmZdnU2n0Y_3Ot2k1mX_bq9JfnicvkZfWp0F2H2fJ6iP1c_fy-u85u75Woxv8kNk3TMi4qBoUIaqGuutZC4FhVl3EgpKdUUZMH1WhQCy6bm6xTDXHJZabYmBiqgp-j7TneY1j3UBtwYdKeGYHsdNsprqw4jzt6r1j-qArOSCS6TwrdnheD_ThBH1dtokl3twE9REVkKyZggLKFf36APfgou-ftHpa9VuHqlWt2Bsq7xqbDZiqp5ajMTJcHbsufvUGnX0FvjHTQ2vR8k5LsEE3yMAZoXkwVW2-Grg-En_st-Z17o_6OmT6iYp7s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857068909</pqid></control><display><type>article</type><title>Interplay of Impaired Cellular Bioenergetics and Autophagy in PMM2-CDG</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ligezka, Anna N ; Budhraja, Rohit ; Nishiyama, Yurika ; Fiesel, Fabienne C ; Preston, Graeme ; Edmondson, Andrew ; Ranatunga, Wasantha ; Van Hove, Johan L K ; Watzlawik, Jens O ; Springer, Wolfdieter ; Pandey, Akhilesh ; Morava, Eva ; Kozicz, Tamas</creator><creatorcontrib>Ligezka, Anna N ; Budhraja, Rohit ; Nishiyama, Yurika ; Fiesel, Fabienne C ; Preston, Graeme ; Edmondson, Andrew ; Ranatunga, Wasantha ; Van Hove, Johan L K ; Watzlawik, Jens O ; Springer, Wolfdieter ; Pandey, Akhilesh ; Morava, Eva ; Kozicz, Tamas</creatorcontrib><description>Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes14081585</identifier><identifier>PMID: 37628636</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Antibodies ; Autophagy ; Autophagy - genetics ; Bioenergetics ; Chromatography ; Congenital Disorders of Glycosylation - genetics ; Disease ; Electron transport chain ; Endoplasmic reticulum ; Energy Metabolism ; Enzymes ; Fibroblasts ; Genetic aspects ; Genetic disorders ; Genotypes ; Glycosylation ; Humans ; Hypotheses ; Infrared imaging systems ; Laboratories ; Mass spectrometry ; Membranes ; Metabolism ; Metabolites ; Mitochondria ; Mitochondria - genetics ; Patients ; Proteins ; Respiration ; Scientific equipment and supplies industry ; Scientific imaging ; Software ; Sorbitol</subject><ispartof>Genes, 2023-08, Vol.14 (8), p.1585</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-194ec378cedd6aa780d79346c88833a3e816ab71708fd6b793068689a4b2ce9e3</citedby><cites>FETCH-LOGICAL-c483t-194ec378cedd6aa780d79346c88833a3e816ab71708fd6b793068689a4b2ce9e3</cites><orcidid>0000-0002-1178-3149 ; 0000-0001-9943-6127 ; 0000-0001-5183-3086 ; 0000-0002-4209-2180 ; 0000-0001-6915-4364 ; 0000-0002-1919-9676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454768/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454768/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37628636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ligezka, Anna N</creatorcontrib><creatorcontrib>Budhraja, Rohit</creatorcontrib><creatorcontrib>Nishiyama, Yurika</creatorcontrib><creatorcontrib>Fiesel, Fabienne C</creatorcontrib><creatorcontrib>Preston, Graeme</creatorcontrib><creatorcontrib>Edmondson, Andrew</creatorcontrib><creatorcontrib>Ranatunga, Wasantha</creatorcontrib><creatorcontrib>Van Hove, Johan L K</creatorcontrib><creatorcontrib>Watzlawik, Jens O</creatorcontrib><creatorcontrib>Springer, Wolfdieter</creatorcontrib><creatorcontrib>Pandey, Akhilesh</creatorcontrib><creatorcontrib>Morava, Eva</creatorcontrib><creatorcontrib>Kozicz, Tamas</creatorcontrib><title>Interplay of Impaired Cellular Bioenergetics and Autophagy in PMM2-CDG</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.</description><subject>Antibodies</subject><subject>Autophagy</subject><subject>Autophagy - genetics</subject><subject>Bioenergetics</subject><subject>Chromatography</subject><subject>Congenital Disorders of Glycosylation - genetics</subject><subject>Disease</subject><subject>Electron transport chain</subject><subject>Endoplasmic reticulum</subject><subject>Energy Metabolism</subject><subject>Enzymes</subject><subject>Fibroblasts</subject><subject>Genetic aspects</subject><subject>Genetic disorders</subject><subject>Genotypes</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Infrared imaging systems</subject><subject>Laboratories</subject><subject>Mass spectrometry</subject><subject>Membranes</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Patients</subject><subject>Proteins</subject><subject>Respiration</subject><subject>Scientific equipment and supplies industry</subject><subject>Scientific imaging</subject><subject>Software</subject><subject>Sorbitol</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkcFv2yAUxtG0qa26HHudLO2yi1sMGPBpytI1jdSqO2xnRPCzS2WDB3al_PclS9cmVeEA4v3e9_jeQ-iswOeUVviiBQexYFgWpSw_oBOCBc0ZI-XHvfsxmsX4gNNimGBcHqFjKjiRnPITdLVyI4Sh05vMN9mqH7QNUGcL6Lqp0yH7YX2qEVoYrYmZdnU2n0Y_3Ot2k1mX_bq9JfnicvkZfWp0F2H2fJ6iP1c_fy-u85u75Woxv8kNk3TMi4qBoUIaqGuutZC4FhVl3EgpKdUUZMH1WhQCy6bm6xTDXHJZabYmBiqgp-j7TneY1j3UBtwYdKeGYHsdNsprqw4jzt6r1j-qArOSCS6TwrdnheD_ThBH1dtokl3twE9REVkKyZggLKFf36APfgou-ftHpa9VuHqlWt2Bsq7xqbDZiqp5ajMTJcHbsufvUGnX0FvjHTQ2vR8k5LsEE3yMAZoXkwVW2-Grg-En_st-Z17o_6OmT6iYp7s</recordid><startdate>20230804</startdate><enddate>20230804</enddate><creator>Ligezka, Anna N</creator><creator>Budhraja, Rohit</creator><creator>Nishiyama, Yurika</creator><creator>Fiesel, Fabienne C</creator><creator>Preston, Graeme</creator><creator>Edmondson, Andrew</creator><creator>Ranatunga, Wasantha</creator><creator>Van Hove, Johan L K</creator><creator>Watzlawik, Jens O</creator><creator>Springer, Wolfdieter</creator><creator>Pandey, Akhilesh</creator><creator>Morava, Eva</creator><creator>Kozicz, Tamas</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1178-3149</orcidid><orcidid>https://orcid.org/0000-0001-9943-6127</orcidid><orcidid>https://orcid.org/0000-0001-5183-3086</orcidid><orcidid>https://orcid.org/0000-0002-4209-2180</orcidid><orcidid>https://orcid.org/0000-0001-6915-4364</orcidid><orcidid>https://orcid.org/0000-0002-1919-9676</orcidid></search><sort><creationdate>20230804</creationdate><title>Interplay of Impaired Cellular Bioenergetics and Autophagy in PMM2-CDG</title><author>Ligezka, Anna N ; Budhraja, Rohit ; Nishiyama, Yurika ; Fiesel, Fabienne C ; Preston, Graeme ; Edmondson, Andrew ; Ranatunga, Wasantha ; Van Hove, Johan L K ; Watzlawik, Jens O ; Springer, Wolfdieter ; Pandey, Akhilesh ; Morava, Eva ; Kozicz, Tamas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-194ec378cedd6aa780d79346c88833a3e816ab71708fd6b793068689a4b2ce9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antibodies</topic><topic>Autophagy</topic><topic>Autophagy - genetics</topic><topic>Bioenergetics</topic><topic>Chromatography</topic><topic>Congenital Disorders of Glycosylation - genetics</topic><topic>Disease</topic><topic>Electron transport chain</topic><topic>Endoplasmic reticulum</topic><topic>Energy Metabolism</topic><topic>Enzymes</topic><topic>Fibroblasts</topic><topic>Genetic aspects</topic><topic>Genetic disorders</topic><topic>Genotypes</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Infrared imaging systems</topic><topic>Laboratories</topic><topic>Mass spectrometry</topic><topic>Membranes</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Patients</topic><topic>Proteins</topic><topic>Respiration</topic><topic>Scientific equipment and supplies industry</topic><topic>Scientific imaging</topic><topic>Software</topic><topic>Sorbitol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ligezka, Anna N</creatorcontrib><creatorcontrib>Budhraja, Rohit</creatorcontrib><creatorcontrib>Nishiyama, Yurika</creatorcontrib><creatorcontrib>Fiesel, Fabienne C</creatorcontrib><creatorcontrib>Preston, Graeme</creatorcontrib><creatorcontrib>Edmondson, Andrew</creatorcontrib><creatorcontrib>Ranatunga, Wasantha</creatorcontrib><creatorcontrib>Van Hove, Johan L K</creatorcontrib><creatorcontrib>Watzlawik, Jens O</creatorcontrib><creatorcontrib>Springer, Wolfdieter</creatorcontrib><creatorcontrib>Pandey, Akhilesh</creatorcontrib><creatorcontrib>Morava, Eva</creatorcontrib><creatorcontrib>Kozicz, Tamas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ligezka, Anna N</au><au>Budhraja, Rohit</au><au>Nishiyama, Yurika</au><au>Fiesel, Fabienne C</au><au>Preston, Graeme</au><au>Edmondson, Andrew</au><au>Ranatunga, Wasantha</au><au>Van Hove, Johan L K</au><au>Watzlawik, Jens O</au><au>Springer, Wolfdieter</au><au>Pandey, Akhilesh</au><au>Morava, Eva</au><au>Kozicz, Tamas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay of Impaired Cellular Bioenergetics and Autophagy in PMM2-CDG</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2023-08-04</date><risdate>2023</risdate><volume>14</volume><issue>8</issue><spage>1585</spage><pages>1585-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37628636</pmid><doi>10.3390/genes14081585</doi><orcidid>https://orcid.org/0000-0002-1178-3149</orcidid><orcidid>https://orcid.org/0000-0001-9943-6127</orcidid><orcidid>https://orcid.org/0000-0001-5183-3086</orcidid><orcidid>https://orcid.org/0000-0002-4209-2180</orcidid><orcidid>https://orcid.org/0000-0001-6915-4364</orcidid><orcidid>https://orcid.org/0000-0002-1919-9676</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2023-08, Vol.14 (8), p.1585
issn 2073-4425
2073-4425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10454768
source MEDLINE; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Antibodies
Autophagy
Autophagy - genetics
Bioenergetics
Chromatography
Congenital Disorders of Glycosylation - genetics
Disease
Electron transport chain
Endoplasmic reticulum
Energy Metabolism
Enzymes
Fibroblasts
Genetic aspects
Genetic disorders
Genotypes
Glycosylation
Humans
Hypotheses
Infrared imaging systems
Laboratories
Mass spectrometry
Membranes
Metabolism
Metabolites
Mitochondria
Mitochondria - genetics
Patients
Proteins
Respiration
Scientific equipment and supplies industry
Scientific imaging
Software
Sorbitol
title Interplay of Impaired Cellular Bioenergetics and Autophagy in PMM2-CDG
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20of%20Impaired%20Cellular%20Bioenergetics%20and%20Autophagy%20in%20PMM2-CDG&rft.jtitle=Genes&rft.au=Ligezka,%20Anna%20N&rft.date=2023-08-04&rft.volume=14&rft.issue=8&rft.spage=1585&rft.pages=1585-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes14081585&rft_dat=%3Cgale_pubme%3EA762475208%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857068909&rft_id=info:pmid/37628636&rft_galeid=A762475208&rfr_iscdi=true