Cardiomyocyte Damage: Ferroptosis Relation to Ischemia-Reperfusion Injury and Future Treatment Options
About half a century ago, Eugene Braunwald, a father of modern cardiology, shared a revolutionary belief that “time is muscle”, which predetermined never-ending effort to preserve the unaffected myocardium. In connection to that, researchers are constantly trying to better comprehend the ongoing cha...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2023-08, Vol.24 (16), p.12846 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 12846 |
container_title | International journal of molecular sciences |
container_volume | 24 |
creator | Laukaitiene, Jolanta Gujyte, Greta Kadusevicius, Edmundas |
description | About half a century ago, Eugene Braunwald, a father of modern cardiology, shared a revolutionary belief that “time is muscle”, which predetermined never-ending effort to preserve the unaffected myocardium. In connection to that, researchers are constantly trying to better comprehend the ongoing changes of the ischemic myocardium. As the latest studies show, metabolic changes after acute myocardial infarction (AMI) are inconsistent and depend on many constituents, which leads to many limitations and lack of unification. Nevertheless, one of the promising novel mechanistic approaches related to iron metabolism now plays an invaluable role in the ischemic heart research field. The heart, because of its high levels of oxygen consumption, is one of the most susceptible organs to iron-induced damage. In the past few years, a relatively new form of programmed cell death, called ferroptosis, has been gaining much attention in the context of myocardial infarction. This review will try to summarize the main novel metabolic pathways and show the pivotal limitations of the affected myocardium metabolomics. |
doi_str_mv | 10.3390/ijms241612846 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10454599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762476696</galeid><sourcerecordid>A762476696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-4d02d08bfd6ad2ea40448596a16f0a8011451ac59520e3afbf96267ddd0c0cc13</originalsourceid><addsrcrecordid>eNptkkFv1DAQhSMEoqXtkXskLlxSxo7jxFxQtbCwUqVKVTlbs_Z461USBzuptP-ehFbAVpUPY81879ljT5a9Z3BZlgo--X2XuGCS8UbIV9kpE5wXALJ-_d_-JHuX0h6Al7xSb7OTspZcQalOM7fCaH3oDsEcRsq_Yoc7-pyvKcYwjCH5lN9Si6MPfT6GfJPMPXUei1saKLopLflNv5_iIcfe5utpnCLld5Fw7Kgf85thkabz7I3DNtHFUzzLfq6_3a1-FNc33zerq-vCCAljISxwC83WWYmWEwoQoqmURCYdYAOMiYqhqVTFgUp0W6ckl7W1FgwYw8qz7Muj7zBtO7JmvkLEVg_RdxgPOqDXx5Xe3-tdeNAMRCUqpWaHj08OMfyaKI2688lQ22JPYUqaN1XdCFbzBf3wDN2HKfZzf38oaGTN2D9qhy1p37swH2wWU301f4OopVRypi5foOZl5-c2oSfn5_yRoHgUmBhSiuT-NslAL5Ohjyaj_A3Yaars</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857086711</pqid></control><display><type>article</type><title>Cardiomyocyte Damage: Ferroptosis Relation to Ischemia-Reperfusion Injury and Future Treatment Options</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Laukaitiene, Jolanta ; Gujyte, Greta ; Kadusevicius, Edmundas</creator><creatorcontrib>Laukaitiene, Jolanta ; Gujyte, Greta ; Kadusevicius, Edmundas</creatorcontrib><description>About half a century ago, Eugene Braunwald, a father of modern cardiology, shared a revolutionary belief that “time is muscle”, which predetermined never-ending effort to preserve the unaffected myocardium. In connection to that, researchers are constantly trying to better comprehend the ongoing changes of the ischemic myocardium. As the latest studies show, metabolic changes after acute myocardial infarction (AMI) are inconsistent and depend on many constituents, which leads to many limitations and lack of unification. Nevertheless, one of the promising novel mechanistic approaches related to iron metabolism now plays an invaluable role in the ischemic heart research field. The heart, because of its high levels of oxygen consumption, is one of the most susceptible organs to iron-induced damage. In the past few years, a relatively new form of programmed cell death, called ferroptosis, has been gaining much attention in the context of myocardial infarction. This review will try to summarize the main novel metabolic pathways and show the pivotal limitations of the affected myocardium metabolomics.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms241612846</identifier><identifier>PMID: 37629039</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Apoptosis ; Atherosclerosis ; Biosynthesis ; Cardiology ; Cardiomyocytes ; Care and treatment ; Cell death ; Cytoplasm ; Enzymes ; Ferroptosis ; Heart ; Heart attack ; Homeostasis ; Iron ; Ischemia ; Lipid peroxidation ; Lipids ; Metabolism ; Mitochondria ; Oxidation ; Physiological aspects ; Proteins ; Review ; Signal transduction</subject><ispartof>International journal of molecular sciences, 2023-08, Vol.24 (16), p.12846</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-4d02d08bfd6ad2ea40448596a16f0a8011451ac59520e3afbf96267ddd0c0cc13</citedby><cites>FETCH-LOGICAL-c460t-4d02d08bfd6ad2ea40448596a16f0a8011451ac59520e3afbf96267ddd0c0cc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454599/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10454599/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Laukaitiene, Jolanta</creatorcontrib><creatorcontrib>Gujyte, Greta</creatorcontrib><creatorcontrib>Kadusevicius, Edmundas</creatorcontrib><title>Cardiomyocyte Damage: Ferroptosis Relation to Ischemia-Reperfusion Injury and Future Treatment Options</title><title>International journal of molecular sciences</title><description>About half a century ago, Eugene Braunwald, a father of modern cardiology, shared a revolutionary belief that “time is muscle”, which predetermined never-ending effort to preserve the unaffected myocardium. In connection to that, researchers are constantly trying to better comprehend the ongoing changes of the ischemic myocardium. As the latest studies show, metabolic changes after acute myocardial infarction (AMI) are inconsistent and depend on many constituents, which leads to many limitations and lack of unification. Nevertheless, one of the promising novel mechanistic approaches related to iron metabolism now plays an invaluable role in the ischemic heart research field. The heart, because of its high levels of oxygen consumption, is one of the most susceptible organs to iron-induced damage. In the past few years, a relatively new form of programmed cell death, called ferroptosis, has been gaining much attention in the context of myocardial infarction. This review will try to summarize the main novel metabolic pathways and show the pivotal limitations of the affected myocardium metabolomics.</description><subject>Apoptosis</subject><subject>Atherosclerosis</subject><subject>Biosynthesis</subject><subject>Cardiology</subject><subject>Cardiomyocytes</subject><subject>Care and treatment</subject><subject>Cell death</subject><subject>Cytoplasm</subject><subject>Enzymes</subject><subject>Ferroptosis</subject><subject>Heart</subject><subject>Heart attack</subject><subject>Homeostasis</subject><subject>Iron</subject><subject>Ischemia</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Oxidation</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Review</subject><subject>Signal transduction</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkkFv1DAQhSMEoqXtkXskLlxSxo7jxFxQtbCwUqVKVTlbs_Z461USBzuptP-ehFbAVpUPY81879ljT5a9Z3BZlgo--X2XuGCS8UbIV9kpE5wXALJ-_d_-JHuX0h6Al7xSb7OTspZcQalOM7fCaH3oDsEcRsq_Yoc7-pyvKcYwjCH5lN9Si6MPfT6GfJPMPXUei1saKLopLflNv5_iIcfe5utpnCLld5Fw7Kgf85thkabz7I3DNtHFUzzLfq6_3a1-FNc33zerq-vCCAljISxwC83WWYmWEwoQoqmURCYdYAOMiYqhqVTFgUp0W6ckl7W1FgwYw8qz7Muj7zBtO7JmvkLEVg_RdxgPOqDXx5Xe3-tdeNAMRCUqpWaHj08OMfyaKI2688lQ22JPYUqaN1XdCFbzBf3wDN2HKfZzf38oaGTN2D9qhy1p37swH2wWU301f4OopVRypi5foOZl5-c2oSfn5_yRoHgUmBhSiuT-NslAL5Ohjyaj_A3Yaars</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Laukaitiene, Jolanta</creator><creator>Gujyte, Greta</creator><creator>Kadusevicius, Edmundas</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230801</creationdate><title>Cardiomyocyte Damage: Ferroptosis Relation to Ischemia-Reperfusion Injury and Future Treatment Options</title><author>Laukaitiene, Jolanta ; Gujyte, Greta ; Kadusevicius, Edmundas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-4d02d08bfd6ad2ea40448596a16f0a8011451ac59520e3afbf96267ddd0c0cc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apoptosis</topic><topic>Atherosclerosis</topic><topic>Biosynthesis</topic><topic>Cardiology</topic><topic>Cardiomyocytes</topic><topic>Care and treatment</topic><topic>Cell death</topic><topic>Cytoplasm</topic><topic>Enzymes</topic><topic>Ferroptosis</topic><topic>Heart</topic><topic>Heart attack</topic><topic>Homeostasis</topic><topic>Iron</topic><topic>Ischemia</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Oxidation</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Review</topic><topic>Signal transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laukaitiene, Jolanta</creatorcontrib><creatorcontrib>Gujyte, Greta</creatorcontrib><creatorcontrib>Kadusevicius, Edmundas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laukaitiene, Jolanta</au><au>Gujyte, Greta</au><au>Kadusevicius, Edmundas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiomyocyte Damage: Ferroptosis Relation to Ischemia-Reperfusion Injury and Future Treatment Options</atitle><jtitle>International journal of molecular sciences</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>24</volume><issue>16</issue><spage>12846</spage><pages>12846-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>About half a century ago, Eugene Braunwald, a father of modern cardiology, shared a revolutionary belief that “time is muscle”, which predetermined never-ending effort to preserve the unaffected myocardium. In connection to that, researchers are constantly trying to better comprehend the ongoing changes of the ischemic myocardium. As the latest studies show, metabolic changes after acute myocardial infarction (AMI) are inconsistent and depend on many constituents, which leads to many limitations and lack of unification. Nevertheless, one of the promising novel mechanistic approaches related to iron metabolism now plays an invaluable role in the ischemic heart research field. The heart, because of its high levels of oxygen consumption, is one of the most susceptible organs to iron-induced damage. In the past few years, a relatively new form of programmed cell death, called ferroptosis, has been gaining much attention in the context of myocardial infarction. This review will try to summarize the main novel metabolic pathways and show the pivotal limitations of the affected myocardium metabolomics.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37629039</pmid><doi>10.3390/ijms241612846</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2023-08, Vol.24 (16), p.12846 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10454599 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Apoptosis Atherosclerosis Biosynthesis Cardiology Cardiomyocytes Care and treatment Cell death Cytoplasm Enzymes Ferroptosis Heart Heart attack Homeostasis Iron Ischemia Lipid peroxidation Lipids Metabolism Mitochondria Oxidation Physiological aspects Proteins Review Signal transduction |
title | Cardiomyocyte Damage: Ferroptosis Relation to Ischemia-Reperfusion Injury and Future Treatment Options |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiomyocyte%20Damage:%20Ferroptosis%20Relation%20to%20Ischemia-Reperfusion%20Injury%20and%20Future%20Treatment%20Options&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Laukaitiene,%20Jolanta&rft.date=2023-08-01&rft.volume=24&rft.issue=16&rft.spage=12846&rft.pages=12846-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms241612846&rft_dat=%3Cgale_pubme%3EA762476696%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857086711&rft_id=info:pmid/37629039&rft_galeid=A762476696&rfr_iscdi=true |