pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios

The open-source Python package pyam provides a suite of features and methods for the analysis, validation and visualization of reference data and scenario results generated by integrated assessment models, macro-energy tools and other frameworks in the domain of energy transition, climate change mit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open research Europe 2021, Vol.1, p.74-74
Hauptverfasser: Huppmann, Daniel, Gidden, Matthew J., Nicholls, Zebedee, Hörsch, Jonas, Lamboll, Robin, Kishimoto, Paul N., Burandt, Thorsten, Fricko, Oliver, Byers, Edward, Kikstra, Jarmo, Brinkerink, Maarten, Budzinski, Maik, Maczek, Florian, Zwickl-Bernhard, Sebastian, Welder, Lara, Álvarez Quispe, Erik Francisco, Smith, Christopher J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue
container_start_page 74
container_title Open research Europe
container_volume 1
creator Huppmann, Daniel
Gidden, Matthew J.
Nicholls, Zebedee
Hörsch, Jonas
Lamboll, Robin
Kishimoto, Paul N.
Burandt, Thorsten
Fricko, Oliver
Byers, Edward
Kikstra, Jarmo
Brinkerink, Maarten
Budzinski, Maik
Maczek, Florian
Zwickl-Bernhard, Sebastian
Welder, Lara
Álvarez Quispe, Erik Francisco
Smith, Christopher J.
description The open-source Python package pyam provides a suite of features and methods for the analysis, validation and visualization of reference data and scenario results generated by integrated assessment models, macro-energy tools and other frameworks in the domain of energy transition, climate change mitigation and sustainable development. It bridges the gap between scenario processing and visualisation solutions that are "hard-wired" to specific modelling frameworks and generic data analysis or plotting packages. The package aims to facilitate reproducibility and reliability of scenario processing, validation and analysis by providing well-tested and documented methods for working with timeseries data in the context of climate policy and energy systems. It supports various data formats, including sub-annual resolution using continuous time representation and "representative timeslices". The pyam package can be useful for modelers generating scenario results using their own tools as well as researchers and analysts working with existing scenario ensembles such as those supporting the IPCC reports or produced in research projects. It is structured in a way that it can be applied irrespective of a user's domain expertise or level of Python knowledge, supporting experts as well as novice users. The code base is implemented following best practices of collaborative scientific-software development. This manuscript describes the design principles of the package and the types of data which can be handled. The usefulness of pyam is illustrated by highlighting several recent applications.
doi_str_mv 10.12688/openreseurope.13633.2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10446008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858992780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3072-10a8797e4af0b344d2364d2df7fb7c103aa598ebffbe10c6b1f04de6f30284c13</originalsourceid><addsrcrecordid>eNpVkVtLw0AQhYMoWGr_guTRl9S95LLxRUrxBgVf6vMySWbrSrJbd5JC_r2hFrEvMwPzcQ6HE0W3nC25yJW693t0AQmHMF1LLnMpl-IimolCiiTjgl_-u6-jBdEXY0xkE8nLWbTdj9A9xCsH7UiWYnBNfLA0QGsJeutd7E1sXY-7AD02MRAhUYeuP6Id1MEn6DDsxphqdBCsp5voykBLuDjtefTx_LRdvyab95e39WqT1JIVIuEMVFEWmIJhlUzTRsh8Go0pTFXUnEmArFRYGVMhZ3VeccPSBnMjmVBpzeU8evzV3Q9Vh81k3wdo9T7YDsKoPVh9_nH2U-_8QXOWpjljalK4OykE_z0g9bqzU4y2BYd-IC1UpspSFIpNaP6LTomJApo_H870sQt91oU-dqGF_AGwD4R6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858992780</pqid></control><display><type>article</type><title>pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Huppmann, Daniel ; Gidden, Matthew J. ; Nicholls, Zebedee ; Hörsch, Jonas ; Lamboll, Robin ; Kishimoto, Paul N. ; Burandt, Thorsten ; Fricko, Oliver ; Byers, Edward ; Kikstra, Jarmo ; Brinkerink, Maarten ; Budzinski, Maik ; Maczek, Florian ; Zwickl-Bernhard, Sebastian ; Welder, Lara ; Álvarez Quispe, Erik Francisco ; Smith, Christopher J.</creator><creatorcontrib>Huppmann, Daniel ; Gidden, Matthew J. ; Nicholls, Zebedee ; Hörsch, Jonas ; Lamboll, Robin ; Kishimoto, Paul N. ; Burandt, Thorsten ; Fricko, Oliver ; Byers, Edward ; Kikstra, Jarmo ; Brinkerink, Maarten ; Budzinski, Maik ; Maczek, Florian ; Zwickl-Bernhard, Sebastian ; Welder, Lara ; Álvarez Quispe, Erik Francisco ; Smith, Christopher J.</creatorcontrib><description>The open-source Python package pyam provides a suite of features and methods for the analysis, validation and visualization of reference data and scenario results generated by integrated assessment models, macro-energy tools and other frameworks in the domain of energy transition, climate change mitigation and sustainable development. It bridges the gap between scenario processing and visualisation solutions that are "hard-wired" to specific modelling frameworks and generic data analysis or plotting packages. The package aims to facilitate reproducibility and reliability of scenario processing, validation and analysis by providing well-tested and documented methods for working with timeseries data in the context of climate policy and energy systems. It supports various data formats, including sub-annual resolution using continuous time representation and "representative timeslices". The pyam package can be useful for modelers generating scenario results using their own tools as well as researchers and analysts working with existing scenario ensembles such as those supporting the IPCC reports or produced in research projects. It is structured in a way that it can be applied irrespective of a user's domain expertise or level of Python knowledge, supporting experts as well as novice users. The code base is implemented following best practices of collaborative scientific-software development. This manuscript describes the design principles of the package and the types of data which can be handled. The usefulness of pyam is illustrated by highlighting several recent applications.</description><identifier>ISSN: 2732-5121</identifier><identifier>EISSN: 2732-5121</identifier><identifier>DOI: 10.12688/openreseurope.13633.2</identifier><language>eng</language><publisher>London, UK: F1000 Research Limited</publisher><subject>Software Tool</subject><ispartof>Open research Europe, 2021, Vol.1, p.74-74</ispartof><rights>Copyright: © 2021 Huppmann D et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3072-10a8797e4af0b344d2364d2df7fb7c103aa598ebffbe10c6b1f04de6f30284c13</citedby><cites>FETCH-LOGICAL-c3072-10a8797e4af0b344d2364d2df7fb7c103aa598ebffbe10c6b1f04de6f30284c13</cites><orcidid>0000-0002-8578-753X ; 0000-0002-6835-9883 ; 0000-0003-3862-9747 ; 0000-0001-9405-1228 ; 0000-0002-8980-9062 ; 0000-0002-7729-7389 ; 0000-0002-4767-2723 ; 0000-0002-8599-6278 ; 0000-0003-0599-4633 ; 0000-0003-2879-1193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446008/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446008/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,4024,27923,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Huppmann, Daniel</creatorcontrib><creatorcontrib>Gidden, Matthew J.</creatorcontrib><creatorcontrib>Nicholls, Zebedee</creatorcontrib><creatorcontrib>Hörsch, Jonas</creatorcontrib><creatorcontrib>Lamboll, Robin</creatorcontrib><creatorcontrib>Kishimoto, Paul N.</creatorcontrib><creatorcontrib>Burandt, Thorsten</creatorcontrib><creatorcontrib>Fricko, Oliver</creatorcontrib><creatorcontrib>Byers, Edward</creatorcontrib><creatorcontrib>Kikstra, Jarmo</creatorcontrib><creatorcontrib>Brinkerink, Maarten</creatorcontrib><creatorcontrib>Budzinski, Maik</creatorcontrib><creatorcontrib>Maczek, Florian</creatorcontrib><creatorcontrib>Zwickl-Bernhard, Sebastian</creatorcontrib><creatorcontrib>Welder, Lara</creatorcontrib><creatorcontrib>Álvarez Quispe, Erik Francisco</creatorcontrib><creatorcontrib>Smith, Christopher J.</creatorcontrib><title>pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios</title><title>Open research Europe</title><description>The open-source Python package pyam provides a suite of features and methods for the analysis, validation and visualization of reference data and scenario results generated by integrated assessment models, macro-energy tools and other frameworks in the domain of energy transition, climate change mitigation and sustainable development. It bridges the gap between scenario processing and visualisation solutions that are "hard-wired" to specific modelling frameworks and generic data analysis or plotting packages. The package aims to facilitate reproducibility and reliability of scenario processing, validation and analysis by providing well-tested and documented methods for working with timeseries data in the context of climate policy and energy systems. It supports various data formats, including sub-annual resolution using continuous time representation and "representative timeslices". The pyam package can be useful for modelers generating scenario results using their own tools as well as researchers and analysts working with existing scenario ensembles such as those supporting the IPCC reports or produced in research projects. It is structured in a way that it can be applied irrespective of a user's domain expertise or level of Python knowledge, supporting experts as well as novice users. The code base is implemented following best practices of collaborative scientific-software development. This manuscript describes the design principles of the package and the types of data which can be handled. The usefulness of pyam is illustrated by highlighting several recent applications.</description><subject>Software Tool</subject><issn>2732-5121</issn><issn>2732-5121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkVtLw0AQhYMoWGr_guTRl9S95LLxRUrxBgVf6vMySWbrSrJbd5JC_r2hFrEvMwPzcQ6HE0W3nC25yJW693t0AQmHMF1LLnMpl-IimolCiiTjgl_-u6-jBdEXY0xkE8nLWbTdj9A9xCsH7UiWYnBNfLA0QGsJeutd7E1sXY-7AD02MRAhUYeuP6Id1MEn6DDsxphqdBCsp5voykBLuDjtefTx_LRdvyab95e39WqT1JIVIuEMVFEWmIJhlUzTRsh8Go0pTFXUnEmArFRYGVMhZ3VeccPSBnMjmVBpzeU8evzV3Q9Vh81k3wdo9T7YDsKoPVh9_nH2U-_8QXOWpjljalK4OykE_z0g9bqzU4y2BYd-IC1UpspSFIpNaP6LTomJApo_H870sQt91oU-dqGF_AGwD4R6</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Huppmann, Daniel</creator><creator>Gidden, Matthew J.</creator><creator>Nicholls, Zebedee</creator><creator>Hörsch, Jonas</creator><creator>Lamboll, Robin</creator><creator>Kishimoto, Paul N.</creator><creator>Burandt, Thorsten</creator><creator>Fricko, Oliver</creator><creator>Byers, Edward</creator><creator>Kikstra, Jarmo</creator><creator>Brinkerink, Maarten</creator><creator>Budzinski, Maik</creator><creator>Maczek, Florian</creator><creator>Zwickl-Bernhard, Sebastian</creator><creator>Welder, Lara</creator><creator>Álvarez Quispe, Erik Francisco</creator><creator>Smith, Christopher J.</creator><general>F1000 Research Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8578-753X</orcidid><orcidid>https://orcid.org/0000-0002-6835-9883</orcidid><orcidid>https://orcid.org/0000-0003-3862-9747</orcidid><orcidid>https://orcid.org/0000-0001-9405-1228</orcidid><orcidid>https://orcid.org/0000-0002-8980-9062</orcidid><orcidid>https://orcid.org/0000-0002-7729-7389</orcidid><orcidid>https://orcid.org/0000-0002-4767-2723</orcidid><orcidid>https://orcid.org/0000-0002-8599-6278</orcidid><orcidid>https://orcid.org/0000-0003-0599-4633</orcidid><orcidid>https://orcid.org/0000-0003-2879-1193</orcidid></search><sort><creationdate>2021</creationdate><title>pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios</title><author>Huppmann, Daniel ; Gidden, Matthew J. ; Nicholls, Zebedee ; Hörsch, Jonas ; Lamboll, Robin ; Kishimoto, Paul N. ; Burandt, Thorsten ; Fricko, Oliver ; Byers, Edward ; Kikstra, Jarmo ; Brinkerink, Maarten ; Budzinski, Maik ; Maczek, Florian ; Zwickl-Bernhard, Sebastian ; Welder, Lara ; Álvarez Quispe, Erik Francisco ; Smith, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3072-10a8797e4af0b344d2364d2df7fb7c103aa598ebffbe10c6b1f04de6f30284c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Software Tool</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huppmann, Daniel</creatorcontrib><creatorcontrib>Gidden, Matthew J.</creatorcontrib><creatorcontrib>Nicholls, Zebedee</creatorcontrib><creatorcontrib>Hörsch, Jonas</creatorcontrib><creatorcontrib>Lamboll, Robin</creatorcontrib><creatorcontrib>Kishimoto, Paul N.</creatorcontrib><creatorcontrib>Burandt, Thorsten</creatorcontrib><creatorcontrib>Fricko, Oliver</creatorcontrib><creatorcontrib>Byers, Edward</creatorcontrib><creatorcontrib>Kikstra, Jarmo</creatorcontrib><creatorcontrib>Brinkerink, Maarten</creatorcontrib><creatorcontrib>Budzinski, Maik</creatorcontrib><creatorcontrib>Maczek, Florian</creatorcontrib><creatorcontrib>Zwickl-Bernhard, Sebastian</creatorcontrib><creatorcontrib>Welder, Lara</creatorcontrib><creatorcontrib>Álvarez Quispe, Erik Francisco</creatorcontrib><creatorcontrib>Smith, Christopher J.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Open research Europe</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huppmann, Daniel</au><au>Gidden, Matthew J.</au><au>Nicholls, Zebedee</au><au>Hörsch, Jonas</au><au>Lamboll, Robin</au><au>Kishimoto, Paul N.</au><au>Burandt, Thorsten</au><au>Fricko, Oliver</au><au>Byers, Edward</au><au>Kikstra, Jarmo</au><au>Brinkerink, Maarten</au><au>Budzinski, Maik</au><au>Maczek, Florian</au><au>Zwickl-Bernhard, Sebastian</au><au>Welder, Lara</au><au>Álvarez Quispe, Erik Francisco</au><au>Smith, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios</atitle><jtitle>Open research Europe</jtitle><date>2021</date><risdate>2021</risdate><volume>1</volume><spage>74</spage><epage>74</epage><pages>74-74</pages><issn>2732-5121</issn><eissn>2732-5121</eissn><abstract>The open-source Python package pyam provides a suite of features and methods for the analysis, validation and visualization of reference data and scenario results generated by integrated assessment models, macro-energy tools and other frameworks in the domain of energy transition, climate change mitigation and sustainable development. It bridges the gap between scenario processing and visualisation solutions that are "hard-wired" to specific modelling frameworks and generic data analysis or plotting packages. The package aims to facilitate reproducibility and reliability of scenario processing, validation and analysis by providing well-tested and documented methods for working with timeseries data in the context of climate policy and energy systems. It supports various data formats, including sub-annual resolution using continuous time representation and "representative timeslices". The pyam package can be useful for modelers generating scenario results using their own tools as well as researchers and analysts working with existing scenario ensembles such as those supporting the IPCC reports or produced in research projects. It is structured in a way that it can be applied irrespective of a user's domain expertise or level of Python knowledge, supporting experts as well as novice users. The code base is implemented following best practices of collaborative scientific-software development. This manuscript describes the design principles of the package and the types of data which can be handled. The usefulness of pyam is illustrated by highlighting several recent applications.</abstract><cop>London, UK</cop><pub>F1000 Research Limited</pub><doi>10.12688/openreseurope.13633.2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8578-753X</orcidid><orcidid>https://orcid.org/0000-0002-6835-9883</orcidid><orcidid>https://orcid.org/0000-0003-3862-9747</orcidid><orcidid>https://orcid.org/0000-0001-9405-1228</orcidid><orcidid>https://orcid.org/0000-0002-8980-9062</orcidid><orcidid>https://orcid.org/0000-0002-7729-7389</orcidid><orcidid>https://orcid.org/0000-0002-4767-2723</orcidid><orcidid>https://orcid.org/0000-0002-8599-6278</orcidid><orcidid>https://orcid.org/0000-0003-0599-4633</orcidid><orcidid>https://orcid.org/0000-0003-2879-1193</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2732-5121
ispartof Open research Europe, 2021, Vol.1, p.74-74
issn 2732-5121
2732-5121
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10446008
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Software Tool
title pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pyam:%20Analysis%20and%20visualisation%20of%20integrated%20assessment%20and%20macro-energy%20scenarios&rft.jtitle=Open%20research%20Europe&rft.au=Huppmann,%20Daniel&rft.date=2021&rft.volume=1&rft.spage=74&rft.epage=74&rft.pages=74-74&rft.issn=2732-5121&rft.eissn=2732-5121&rft_id=info:doi/10.12688/openreseurope.13633.2&rft_dat=%3Cproquest_pubme%3E2858992780%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858992780&rft_id=info:pmid/&rfr_iscdi=true