Effect of bismuth doping on the crystal structure and photocatalytic activity of titanium oxide

The doping of TiO 2 with metals and non-metals is considered one of the most significant approaches to improve its photocatalytic efficiency. In this study, the photodegradation of methyl orange (MO) was examined in relation to the impact of Bi-doping of TiO 2 . The doped TiO 2 with various concentr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2023-08, Vol.13 (36), p.2581-2592
Hauptverfasser: Tolan, Dina A, El-Sawaf, Ayman K, Alhindawy, Islam G, Ismael, Mohamed H, Nassar, Amal A, El-Nahas, Ahmed M, Maize, Mai, Elshehy, Emad A, El-Khouly, Mohamed E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2592
container_issue 36
container_start_page 2581
container_title RSC advances
container_volume 13
creator Tolan, Dina A
El-Sawaf, Ayman K
Alhindawy, Islam G
Ismael, Mohamed H
Nassar, Amal A
El-Nahas, Ahmed M
Maize, Mai
Elshehy, Emad A
El-Khouly, Mohamed E
description The doping of TiO 2 with metals and non-metals is considered one of the most significant approaches to improve its photocatalytic efficiency. In this study, the photodegradation of methyl orange (MO) was examined in relation to the impact of Bi-doping of TiO 2 . The doped TiO 2 with various concentrations of metal was successfully synthesized by a one-step hydrothermal method and characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and UV-vis spectroscopy. The XRD results revealed that the anatase phase, with an average crystallite size of 16.2 nm, was the main phase of TiO 2 . According to the anatase texture results, it was found that the doping of TiO 2 increased the specific surface area for Bi 2 O 3 @TiO 2 without a change in the crystal structure or the crystal phase of TiO 2 . Also, XPS analysis confirmed the formation of Ti 4+ and Ti 3+ as a result of doping with Bi. The activities of both pure TiO 2 and Bi-doped TiO 2 were tested to study their ability to decolorize MO dye in an aqueous solution. The photocatalytic degradation of MO over Bi 2 O 3 @TiO 2 reached 98.21%, which was much higher than the 42% achieved by pure TiO 2 . Doping TiO 2 with Bi increased its visible-light absorption as Bi-doping generated a new intermediate energy level below the CB edge of the TiO 2 orbitals, causing a shift in the band gap from the UV to the visible region, thus enhancing its photocatalytic efficiency. In addition, the effects of the initial pH, initial pollutant concentration, and contact time were examined and discussed. Photocatalytic degradation of methyl orange using TiO 2 -doping of Bi 2 O 3 .
doi_str_mv 10.1039/d3ra04034h
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10445215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2857836394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-1850ba7f14b09eb7012607a10787a8863dd67910064263e000576c471480cb033</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhosoOKY33gsBb0SYnjRp0l7JmPMDBoLodUjT1Ga0zUzS4f69mRO_cnMC5-HhPbxJcoLhEgMpririJFAgtNlLRilQNkmBFfu__ofJsfdLiI9lOGV4lIh5XWsVkK1RaXw3hAZVdmX6V2R7FBqNlNv4IFvkgxtUGJxGsq_QqrHBKhkXm2AUkiqYtQmbrSaYIHszdMi-m0ofJQe1bL0-_prj5OV2_jy7nywe7x5m08VEUWBhgvMMSslrTEsodMkhpgMuMfCcyzxnpKoYL3DMTVNGdDwg40xRjmkOqgRCxsn1zrsayk5XSvfByVasnOmk2wgrjfi76U0jXu1aYKA0S3EWDedfBmffBu2D6IxXum1lr-3gRZpnPCeMFDSiZ__QpR1cH-_bUkWWFsC3wosdpZz13un6Ow0GsS1M3JCn6Wdh9xE-3cHOq2_up1DyAeYPkeU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859529075</pqid></control><display><type>article</type><title>Effect of bismuth doping on the crystal structure and photocatalytic activity of titanium oxide</title><source>Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Tolan, Dina A ; El-Sawaf, Ayman K ; Alhindawy, Islam G ; Ismael, Mohamed H ; Nassar, Amal A ; El-Nahas, Ahmed M ; Maize, Mai ; Elshehy, Emad A ; El-Khouly, Mohamed E</creator><creatorcontrib>Tolan, Dina A ; El-Sawaf, Ayman K ; Alhindawy, Islam G ; Ismael, Mohamed H ; Nassar, Amal A ; El-Nahas, Ahmed M ; Maize, Mai ; Elshehy, Emad A ; El-Khouly, Mohamed E</creatorcontrib><description>The doping of TiO 2 with metals and non-metals is considered one of the most significant approaches to improve its photocatalytic efficiency. In this study, the photodegradation of methyl orange (MO) was examined in relation to the impact of Bi-doping of TiO 2 . The doped TiO 2 with various concentrations of metal was successfully synthesized by a one-step hydrothermal method and characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and UV-vis spectroscopy. The XRD results revealed that the anatase phase, with an average crystallite size of 16.2 nm, was the main phase of TiO 2 . According to the anatase texture results, it was found that the doping of TiO 2 increased the specific surface area for Bi 2 O 3 @TiO 2 without a change in the crystal structure or the crystal phase of TiO 2 . Also, XPS analysis confirmed the formation of Ti 4+ and Ti 3+ as a result of doping with Bi. The activities of both pure TiO 2 and Bi-doped TiO 2 were tested to study their ability to decolorize MO dye in an aqueous solution. The photocatalytic degradation of MO over Bi 2 O 3 @TiO 2 reached 98.21%, which was much higher than the 42% achieved by pure TiO 2 . Doping TiO 2 with Bi increased its visible-light absorption as Bi-doping generated a new intermediate energy level below the CB edge of the TiO 2 orbitals, causing a shift in the band gap from the UV to the visible region, thus enhancing its photocatalytic efficiency. In addition, the effects of the initial pH, initial pollutant concentration, and contact time were examined and discussed. Photocatalytic degradation of methyl orange using TiO 2 -doping of Bi 2 O 3 .</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d3ra04034h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anatase ; Aqueous solutions ; Bismuth trioxide ; Catalytic activity ; Chemistry ; Crystal structure ; Crystallites ; Decoloring ; Doping ; Dyes ; Electromagnetic absorption ; Energy levels ; Field emission microscopy ; Field emission spectroscopy ; Fourier transforms ; Hydrothermal crystal growth ; Infrared spectroscopy ; Photocatalysis ; Photodegradation ; Photoelectrons ; Spectrum analysis ; Titanium dioxide ; Titanium oxides ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>RSC advances, 2023-08, Vol.13 (36), p.2581-2592</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-1850ba7f14b09eb7012607a10787a8863dd67910064263e000576c471480cb033</citedby><cites>FETCH-LOGICAL-c406t-1850ba7f14b09eb7012607a10787a8863dd67910064263e000576c471480cb033</cites><orcidid>0000-0002-8458-8950 ; 0000-0001-6511-3370 ; 0000-0002-0517-4080 ; 0000-0002-8547-7574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445215/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445215/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27926,27927,53793,53795</link.rule.ids></links><search><creatorcontrib>Tolan, Dina A</creatorcontrib><creatorcontrib>El-Sawaf, Ayman K</creatorcontrib><creatorcontrib>Alhindawy, Islam G</creatorcontrib><creatorcontrib>Ismael, Mohamed H</creatorcontrib><creatorcontrib>Nassar, Amal A</creatorcontrib><creatorcontrib>El-Nahas, Ahmed M</creatorcontrib><creatorcontrib>Maize, Mai</creatorcontrib><creatorcontrib>Elshehy, Emad A</creatorcontrib><creatorcontrib>El-Khouly, Mohamed E</creatorcontrib><title>Effect of bismuth doping on the crystal structure and photocatalytic activity of titanium oxide</title><title>RSC advances</title><description>The doping of TiO 2 with metals and non-metals is considered one of the most significant approaches to improve its photocatalytic efficiency. In this study, the photodegradation of methyl orange (MO) was examined in relation to the impact of Bi-doping of TiO 2 . The doped TiO 2 with various concentrations of metal was successfully synthesized by a one-step hydrothermal method and characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and UV-vis spectroscopy. The XRD results revealed that the anatase phase, with an average crystallite size of 16.2 nm, was the main phase of TiO 2 . According to the anatase texture results, it was found that the doping of TiO 2 increased the specific surface area for Bi 2 O 3 @TiO 2 without a change in the crystal structure or the crystal phase of TiO 2 . Also, XPS analysis confirmed the formation of Ti 4+ and Ti 3+ as a result of doping with Bi. The activities of both pure TiO 2 and Bi-doped TiO 2 were tested to study their ability to decolorize MO dye in an aqueous solution. The photocatalytic degradation of MO over Bi 2 O 3 @TiO 2 reached 98.21%, which was much higher than the 42% achieved by pure TiO 2 . Doping TiO 2 with Bi increased its visible-light absorption as Bi-doping generated a new intermediate energy level below the CB edge of the TiO 2 orbitals, causing a shift in the band gap from the UV to the visible region, thus enhancing its photocatalytic efficiency. In addition, the effects of the initial pH, initial pollutant concentration, and contact time were examined and discussed. Photocatalytic degradation of methyl orange using TiO 2 -doping of Bi 2 O 3 .</description><subject>Anatase</subject><subject>Aqueous solutions</subject><subject>Bismuth trioxide</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Crystal structure</subject><subject>Crystallites</subject><subject>Decoloring</subject><subject>Doping</subject><subject>Dyes</subject><subject>Electromagnetic absorption</subject><subject>Energy levels</subject><subject>Field emission microscopy</subject><subject>Field emission spectroscopy</subject><subject>Fourier transforms</subject><subject>Hydrothermal crystal growth</subject><subject>Infrared spectroscopy</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>Photoelectrons</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><subject>Titanium oxides</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkV1LwzAUhosoOKY33gsBb0SYnjRp0l7JmPMDBoLodUjT1Ga0zUzS4f69mRO_cnMC5-HhPbxJcoLhEgMpririJFAgtNlLRilQNkmBFfu__ofJsfdLiI9lOGV4lIh5XWsVkK1RaXw3hAZVdmX6V2R7FBqNlNv4IFvkgxtUGJxGsq_QqrHBKhkXm2AUkiqYtQmbrSaYIHszdMi-m0ofJQe1bL0-_prj5OV2_jy7nywe7x5m08VEUWBhgvMMSslrTEsodMkhpgMuMfCcyzxnpKoYL3DMTVNGdDwg40xRjmkOqgRCxsn1zrsayk5XSvfByVasnOmk2wgrjfi76U0jXu1aYKA0S3EWDedfBmffBu2D6IxXum1lr-3gRZpnPCeMFDSiZ__QpR1cH-_bUkWWFsC3wosdpZz13un6Ow0GsS1M3JCn6Wdh9xE-3cHOq2_up1DyAeYPkeU</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>Tolan, Dina A</creator><creator>El-Sawaf, Ayman K</creator><creator>Alhindawy, Islam G</creator><creator>Ismael, Mohamed H</creator><creator>Nassar, Amal A</creator><creator>El-Nahas, Ahmed M</creator><creator>Maize, Mai</creator><creator>Elshehy, Emad A</creator><creator>El-Khouly, Mohamed E</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8458-8950</orcidid><orcidid>https://orcid.org/0000-0001-6511-3370</orcidid><orcidid>https://orcid.org/0000-0002-0517-4080</orcidid><orcidid>https://orcid.org/0000-0002-8547-7574</orcidid></search><sort><creationdate>20230823</creationdate><title>Effect of bismuth doping on the crystal structure and photocatalytic activity of titanium oxide</title><author>Tolan, Dina A ; El-Sawaf, Ayman K ; Alhindawy, Islam G ; Ismael, Mohamed H ; Nassar, Amal A ; El-Nahas, Ahmed M ; Maize, Mai ; Elshehy, Emad A ; El-Khouly, Mohamed E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-1850ba7f14b09eb7012607a10787a8863dd67910064263e000576c471480cb033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anatase</topic><topic>Aqueous solutions</topic><topic>Bismuth trioxide</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Crystal structure</topic><topic>Crystallites</topic><topic>Decoloring</topic><topic>Doping</topic><topic>Dyes</topic><topic>Electromagnetic absorption</topic><topic>Energy levels</topic><topic>Field emission microscopy</topic><topic>Field emission spectroscopy</topic><topic>Fourier transforms</topic><topic>Hydrothermal crystal growth</topic><topic>Infrared spectroscopy</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>Photoelectrons</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><topic>Titanium oxides</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tolan, Dina A</creatorcontrib><creatorcontrib>El-Sawaf, Ayman K</creatorcontrib><creatorcontrib>Alhindawy, Islam G</creatorcontrib><creatorcontrib>Ismael, Mohamed H</creatorcontrib><creatorcontrib>Nassar, Amal A</creatorcontrib><creatorcontrib>El-Nahas, Ahmed M</creatorcontrib><creatorcontrib>Maize, Mai</creatorcontrib><creatorcontrib>Elshehy, Emad A</creatorcontrib><creatorcontrib>El-Khouly, Mohamed E</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tolan, Dina A</au><au>El-Sawaf, Ayman K</au><au>Alhindawy, Islam G</au><au>Ismael, Mohamed H</au><au>Nassar, Amal A</au><au>El-Nahas, Ahmed M</au><au>Maize, Mai</au><au>Elshehy, Emad A</au><au>El-Khouly, Mohamed E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of bismuth doping on the crystal structure and photocatalytic activity of titanium oxide</atitle><jtitle>RSC advances</jtitle><date>2023-08-23</date><risdate>2023</risdate><volume>13</volume><issue>36</issue><spage>2581</spage><epage>2592</epage><pages>2581-2592</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>The doping of TiO 2 with metals and non-metals is considered one of the most significant approaches to improve its photocatalytic efficiency. In this study, the photodegradation of methyl orange (MO) was examined in relation to the impact of Bi-doping of TiO 2 . The doped TiO 2 with various concentrations of metal was successfully synthesized by a one-step hydrothermal method and characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and UV-vis spectroscopy. The XRD results revealed that the anatase phase, with an average crystallite size of 16.2 nm, was the main phase of TiO 2 . According to the anatase texture results, it was found that the doping of TiO 2 increased the specific surface area for Bi 2 O 3 @TiO 2 without a change in the crystal structure or the crystal phase of TiO 2 . Also, XPS analysis confirmed the formation of Ti 4+ and Ti 3+ as a result of doping with Bi. The activities of both pure TiO 2 and Bi-doped TiO 2 were tested to study their ability to decolorize MO dye in an aqueous solution. The photocatalytic degradation of MO over Bi 2 O 3 @TiO 2 reached 98.21%, which was much higher than the 42% achieved by pure TiO 2 . Doping TiO 2 with Bi increased its visible-light absorption as Bi-doping generated a new intermediate energy level below the CB edge of the TiO 2 orbitals, causing a shift in the band gap from the UV to the visible region, thus enhancing its photocatalytic efficiency. In addition, the effects of the initial pH, initial pollutant concentration, and contact time were examined and discussed. Photocatalytic degradation of methyl orange using TiO 2 -doping of Bi 2 O 3 .</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ra04034h</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8458-8950</orcidid><orcidid>https://orcid.org/0000-0001-6511-3370</orcidid><orcidid>https://orcid.org/0000-0002-0517-4080</orcidid><orcidid>https://orcid.org/0000-0002-8547-7574</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2023-08, Vol.13 (36), p.2581-2592
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10445215
source Directory of Open Access Journals; PubMed Central Open Access; PubMed Central; EZB Electronic Journals Library
subjects Anatase
Aqueous solutions
Bismuth trioxide
Catalytic activity
Chemistry
Crystal structure
Crystallites
Decoloring
Doping
Dyes
Electromagnetic absorption
Energy levels
Field emission microscopy
Field emission spectroscopy
Fourier transforms
Hydrothermal crystal growth
Infrared spectroscopy
Photocatalysis
Photodegradation
Photoelectrons
Spectrum analysis
Titanium dioxide
Titanium oxides
X ray photoelectron spectroscopy
X-ray diffraction
title Effect of bismuth doping on the crystal structure and photocatalytic activity of titanium oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T15%3A10%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20bismuth%20doping%20on%20the%20crystal%20structure%20and%20photocatalytic%20activity%20of%20titanium%20oxide&rft.jtitle=RSC%20advances&rft.au=Tolan,%20Dina%20A&rft.date=2023-08-23&rft.volume=13&rft.issue=36&rft.spage=2581&rft.epage=2592&rft.pages=2581-2592&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d3ra04034h&rft_dat=%3Cproquest_pubme%3E2857836394%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859529075&rft_id=info:pmid/&rfr_iscdi=true