Colossal transverse magnetoresistance due to nematic superconducting phase fluctuations in a copper oxide

Abstract Electronic anisotropy (“nematicity”) has been detected in cuprate superconductors by various experimental techniques. Using angle-resolved transverse resistance (ARTR) measurements, a very sensitive and background-free technique that can detect 0.5% anisotropy in transport, we have observed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PNAS nexus 2023-08, Vol.2 (8), p.pgad255-pgad255
Hauptverfasser: Wårdh, Jonatan, Granath, Mats, Wu, Jie, Bollinger, Anthony T, He, Xi, Božović, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page pgad255
container_issue 8
container_start_page pgad255
container_title PNAS nexus
container_volume 2
creator Wårdh, Jonatan
Granath, Mats
Wu, Jie
Bollinger, Anthony T
He, Xi
Božović, Ivan
description Abstract Electronic anisotropy (“nematicity”) has been detected in cuprate superconductors by various experimental techniques. Using angle-resolved transverse resistance (ARTR) measurements, a very sensitive and background-free technique that can detect 0.5% anisotropy in transport, we have observed it also in La2-xSrxCuO4 (LSCO) for 0.02 ≤ x ≤ 0.25. A central enigma in LSCO is the rotation of the nematic director (orientation of the largest longitudinal resistance) with temperature; this has not been seen before in any material. Here, we address this puzzle by measuring the angle-resolved transverse magnetoresistance (ARTMR) in LSCO. We report the discovery of colossal transverse magnetoresistance (CTMR)—an order-of-magnitude drop in the transverse resistivity in the magnetic field of 6 T. We show that the apparent rotation of the nematic director is caused by anisotropic superconducting fluctuations, which are not aligned with the normal electron fluid, consistent with coexisting bond-aligned and diagonal nematic orders. We quantify this by modeling the (magneto-)conductivity as a sum of normal (Drude) and paraconducting (Aslamazov–Larkin) channels but extended to contain anisotropic Drude and Cooper-pair effective mass tensors. Strikingly, the anisotropy of Cooper-pair stiffness is much larger than that of the normal electrons. It grows dramatically on the underdoped side, where the fluctuations become quasi-one-dimensional. Our analysis is general rather than model dependent. Still, we discuss some candidate microscopic models, including coupled strongly-correlated ladders where the transverse (interladder) phase stiffness is low compared with the longitudinal intraladder stiffness, as well as the anisotropic superconducting fluctuations expected close to the transition to a pair-density wave state.
doi_str_mv 10.1093/pnasnexus/pgad255
format Article
fullrecord <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10438889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A778283302</galeid><oup_id>10.1093/pnasnexus/pgad255</oup_id><sourcerecordid>A778283302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635t-4f92664d57f94bc70c5e3eb308d0daae62a8bcbf9c8770acc2c1dba02b7b6a1a3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEolXpD-CCLLhwYFt_JLFzQtWKL6kSFzhbE2eSNUrsEDul_Hum2mXVlZCQD7bHzzujeT1F8VLwK8EbdT0HSAHv13Q9D9DJqnpSnEtdyU1dlfLpo_NZcZnSD8651FqIsnpenCldc6F4c174bRxjSjCyvEBId7gkZBMMAXNcMPmUIThk3YosRxZwguwdS-uMi4uhW132YWDzDkjWj3RdCYghMR8YMBdnAlm89x2-KJ71MCa8POwXxfePH75tP29uv376sr253bhaVXlT9o2s67KrdN-UrdPcVaiwVdx0vAPAWoJpXds3zmjNwTnpRNcCl61uaxCgLorNPm_6hfPa2nnxEyy_bQRvh3W2FBpWm9AqckgY4t_veYIn7BwGcmI8kZ2-BL-zQ7yzgpfKGNNQhtf7DDFlb5PzGd2O3AnospVkfFkLgt4eyizx54op28knh-MIAeOarDRVqSouTU3omz06wIjWhz5SXfeA2xutjTRKcUnU1T8oWh1Onqpj7yl-IhB7gVvoxxfsjz0Kbh9Gyh5Hyh5GijSvHptzVPwdIALeHXona_-f7w-OOt4p</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854350286</pqid></control><display><type>article</type><title>Colossal transverse magnetoresistance due to nematic superconducting phase fluctuations in a copper oxide</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wårdh, Jonatan ; Granath, Mats ; Wu, Jie ; Bollinger, Anthony T ; He, Xi ; Božović, Ivan</creator><contributor>Goyal, Amit</contributor><creatorcontrib>Wårdh, Jonatan ; Granath, Mats ; Wu, Jie ; Bollinger, Anthony T ; He, Xi ; Božović, Ivan ; Brookhaven National Laboratory (BNL), Upton, NY (United States) ; Goyal, Amit</creatorcontrib><description>Abstract Electronic anisotropy (“nematicity”) has been detected in cuprate superconductors by various experimental techniques. Using angle-resolved transverse resistance (ARTR) measurements, a very sensitive and background-free technique that can detect 0.5% anisotropy in transport, we have observed it also in La2-xSrxCuO4 (LSCO) for 0.02 ≤ x ≤ 0.25. A central enigma in LSCO is the rotation of the nematic director (orientation of the largest longitudinal resistance) with temperature; this has not been seen before in any material. Here, we address this puzzle by measuring the angle-resolved transverse magnetoresistance (ARTMR) in LSCO. We report the discovery of colossal transverse magnetoresistance (CTMR)—an order-of-magnitude drop in the transverse resistivity in the magnetic field of 6 T. We show that the apparent rotation of the nematic director is caused by anisotropic superconducting fluctuations, which are not aligned with the normal electron fluid, consistent with coexisting bond-aligned and diagonal nematic orders. We quantify this by modeling the (magneto-)conductivity as a sum of normal (Drude) and paraconducting (Aslamazov–Larkin) channels but extended to contain anisotropic Drude and Cooper-pair effective mass tensors. Strikingly, the anisotropy of Cooper-pair stiffness is much larger than that of the normal electrons. It grows dramatically on the underdoped side, where the fluctuations become quasi-one-dimensional. Our analysis is general rather than model dependent. Still, we discuss some candidate microscopic models, including coupled strongly-correlated ladders where the transverse (interladder) phase stiffness is low compared with the longitudinal intraladder stiffness, as well as the anisotropic superconducting fluctuations expected close to the transition to a pair-density wave state.</description><identifier>ISSN: 2752-6542</identifier><identifier>EISSN: 2752-6542</identifier><identifier>DOI: 10.1093/pnasnexus/pgad255</identifier><identifier>PMID: 37601309</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Analysis ; Anisotropy ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Copper oxide ; Cuprite ; Den kondenserade materiens fysik ; Electric properties ; Magnetic fields ; Magnetic properties ; Magnetoresistance ; Mechanical properties ; Physical Sciences and Engineering ; Superconductors</subject><ispartof>PNAS nexus, 2023-08, Vol.2 (8), p.pgad255-pgad255</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences.</rights><rights>COPYRIGHT 2023 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c635t-4f92664d57f94bc70c5e3eb308d0daae62a8bcbf9c8770acc2c1dba02b7b6a1a3</citedby><cites>FETCH-LOGICAL-c635t-4f92664d57f94bc70c5e3eb308d0daae62a8bcbf9c8770acc2c1dba02b7b6a1a3</cites><orcidid>0000-0001-6400-7461 ; 0000-0003-3185-2014 ; 0000000331852014 ; 0000000164007461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438889/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438889/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37601309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2000461$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/327518$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Goyal, Amit</contributor><creatorcontrib>Wårdh, Jonatan</creatorcontrib><creatorcontrib>Granath, Mats</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Bollinger, Anthony T</creatorcontrib><creatorcontrib>He, Xi</creatorcontrib><creatorcontrib>Božović, Ivan</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Colossal transverse magnetoresistance due to nematic superconducting phase fluctuations in a copper oxide</title><title>PNAS nexus</title><addtitle>PNAS Nexus</addtitle><description>Abstract Electronic anisotropy (“nematicity”) has been detected in cuprate superconductors by various experimental techniques. Using angle-resolved transverse resistance (ARTR) measurements, a very sensitive and background-free technique that can detect 0.5% anisotropy in transport, we have observed it also in La2-xSrxCuO4 (LSCO) for 0.02 ≤ x ≤ 0.25. A central enigma in LSCO is the rotation of the nematic director (orientation of the largest longitudinal resistance) with temperature; this has not been seen before in any material. Here, we address this puzzle by measuring the angle-resolved transverse magnetoresistance (ARTMR) in LSCO. We report the discovery of colossal transverse magnetoresistance (CTMR)—an order-of-magnitude drop in the transverse resistivity in the magnetic field of 6 T. We show that the apparent rotation of the nematic director is caused by anisotropic superconducting fluctuations, which are not aligned with the normal electron fluid, consistent with coexisting bond-aligned and diagonal nematic orders. We quantify this by modeling the (magneto-)conductivity as a sum of normal (Drude) and paraconducting (Aslamazov–Larkin) channels but extended to contain anisotropic Drude and Cooper-pair effective mass tensors. Strikingly, the anisotropy of Cooper-pair stiffness is much larger than that of the normal electrons. It grows dramatically on the underdoped side, where the fluctuations become quasi-one-dimensional. Our analysis is general rather than model dependent. Still, we discuss some candidate microscopic models, including coupled strongly-correlated ladders where the transverse (interladder) phase stiffness is low compared with the longitudinal intraladder stiffness, as well as the anisotropic superconducting fluctuations expected close to the transition to a pair-density wave state.</description><subject>Analysis</subject><subject>Anisotropy</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Copper oxide</subject><subject>Cuprite</subject><subject>Den kondenserade materiens fysik</subject><subject>Electric properties</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetoresistance</subject><subject>Mechanical properties</subject><subject>Physical Sciences and Engineering</subject><subject>Superconductors</subject><issn>2752-6542</issn><issn>2752-6542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkk1v1DAQhiMEolXpD-CCLLhwYFt_JLFzQtWKL6kSFzhbE2eSNUrsEDul_Hum2mXVlZCQD7bHzzujeT1F8VLwK8EbdT0HSAHv13Q9D9DJqnpSnEtdyU1dlfLpo_NZcZnSD8651FqIsnpenCldc6F4c174bRxjSjCyvEBId7gkZBMMAXNcMPmUIThk3YosRxZwguwdS-uMi4uhW132YWDzDkjWj3RdCYghMR8YMBdnAlm89x2-KJ71MCa8POwXxfePH75tP29uv376sr253bhaVXlT9o2s67KrdN-UrdPcVaiwVdx0vAPAWoJpXds3zmjNwTnpRNcCl61uaxCgLorNPm_6hfPa2nnxEyy_bQRvh3W2FBpWm9AqckgY4t_veYIn7BwGcmI8kZ2-BL-zQ7yzgpfKGNNQhtf7DDFlb5PzGd2O3AnospVkfFkLgt4eyizx54op28knh-MIAeOarDRVqSouTU3omz06wIjWhz5SXfeA2xutjTRKcUnU1T8oWh1Onqpj7yl-IhB7gVvoxxfsjz0Kbh9Gyh5Hyh5GijSvHptzVPwdIALeHXona_-f7w-OOt4p</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Wårdh, Jonatan</creator><creator>Granath, Mats</creator><creator>Wu, Jie</creator><creator>Bollinger, Anthony T</creator><creator>He, Xi</creator><creator>Božović, Ivan</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope><orcidid>https://orcid.org/0000-0001-6400-7461</orcidid><orcidid>https://orcid.org/0000-0003-3185-2014</orcidid><orcidid>https://orcid.org/0000000331852014</orcidid><orcidid>https://orcid.org/0000000164007461</orcidid></search><sort><creationdate>20230801</creationdate><title>Colossal transverse magnetoresistance due to nematic superconducting phase fluctuations in a copper oxide</title><author>Wårdh, Jonatan ; Granath, Mats ; Wu, Jie ; Bollinger, Anthony T ; He, Xi ; Božović, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635t-4f92664d57f94bc70c5e3eb308d0daae62a8bcbf9c8770acc2c1dba02b7b6a1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Anisotropy</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Copper oxide</topic><topic>Cuprite</topic><topic>Den kondenserade materiens fysik</topic><topic>Electric properties</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetoresistance</topic><topic>Mechanical properties</topic><topic>Physical Sciences and Engineering</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wårdh, Jonatan</creatorcontrib><creatorcontrib>Granath, Mats</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Bollinger, Anthony T</creatorcontrib><creatorcontrib>He, Xi</creatorcontrib><creatorcontrib>Božović, Ivan</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>PNAS nexus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wårdh, Jonatan</au><au>Granath, Mats</au><au>Wu, Jie</au><au>Bollinger, Anthony T</au><au>He, Xi</au><au>Božović, Ivan</au><au>Goyal, Amit</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colossal transverse magnetoresistance due to nematic superconducting phase fluctuations in a copper oxide</atitle><jtitle>PNAS nexus</jtitle><addtitle>PNAS Nexus</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>2</volume><issue>8</issue><spage>pgad255</spage><epage>pgad255</epage><pages>pgad255-pgad255</pages><issn>2752-6542</issn><eissn>2752-6542</eissn><abstract>Abstract Electronic anisotropy (“nematicity”) has been detected in cuprate superconductors by various experimental techniques. Using angle-resolved transverse resistance (ARTR) measurements, a very sensitive and background-free technique that can detect 0.5% anisotropy in transport, we have observed it also in La2-xSrxCuO4 (LSCO) for 0.02 ≤ x ≤ 0.25. A central enigma in LSCO is the rotation of the nematic director (orientation of the largest longitudinal resistance) with temperature; this has not been seen before in any material. Here, we address this puzzle by measuring the angle-resolved transverse magnetoresistance (ARTMR) in LSCO. We report the discovery of colossal transverse magnetoresistance (CTMR)—an order-of-magnitude drop in the transverse resistivity in the magnetic field of 6 T. We show that the apparent rotation of the nematic director is caused by anisotropic superconducting fluctuations, which are not aligned with the normal electron fluid, consistent with coexisting bond-aligned and diagonal nematic orders. We quantify this by modeling the (magneto-)conductivity as a sum of normal (Drude) and paraconducting (Aslamazov–Larkin) channels but extended to contain anisotropic Drude and Cooper-pair effective mass tensors. Strikingly, the anisotropy of Cooper-pair stiffness is much larger than that of the normal electrons. It grows dramatically on the underdoped side, where the fluctuations become quasi-one-dimensional. Our analysis is general rather than model dependent. Still, we discuss some candidate microscopic models, including coupled strongly-correlated ladders where the transverse (interladder) phase stiffness is low compared with the longitudinal intraladder stiffness, as well as the anisotropic superconducting fluctuations expected close to the transition to a pair-density wave state.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>37601309</pmid><doi>10.1093/pnasnexus/pgad255</doi><orcidid>https://orcid.org/0000-0001-6400-7461</orcidid><orcidid>https://orcid.org/0000-0003-3185-2014</orcidid><orcidid>https://orcid.org/0000000331852014</orcidid><orcidid>https://orcid.org/0000000164007461</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2752-6542
ispartof PNAS nexus, 2023-08, Vol.2 (8), p.pgad255-pgad255
issn 2752-6542
2752-6542
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10438889
source Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Analysis
Anisotropy
Condensed Matter Physics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Copper oxide
Cuprite
Den kondenserade materiens fysik
Electric properties
Magnetic fields
Magnetic properties
Magnetoresistance
Mechanical properties
Physical Sciences and Engineering
Superconductors
title Colossal transverse magnetoresistance due to nematic superconducting phase fluctuations in a copper oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colossal%20transverse%20magnetoresistance%20due%20to%20nematic%20superconducting%20phase%20fluctuations%20in%20a%20copper%20oxide&rft.jtitle=PNAS%20nexus&rft.au=W%C3%A5rdh,%20Jonatan&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2023-08-01&rft.volume=2&rft.issue=8&rft.spage=pgad255&rft.epage=pgad255&rft.pages=pgad255-pgad255&rft.issn=2752-6542&rft.eissn=2752-6542&rft_id=info:doi/10.1093/pnasnexus/pgad255&rft_dat=%3Cgale_swepu%3EA778283302%3C/gale_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854350286&rft_id=info:pmid/37601309&rft_galeid=A778283302&rft_oup_id=10.1093/pnasnexus/pgad255&rfr_iscdi=true