Colossal transverse magnetoresistance due to nematic superconducting phase fluctuations in a copper oxide
Abstract Electronic anisotropy (“nematicity”) has been detected in cuprate superconductors by various experimental techniques. Using angle-resolved transverse resistance (ARTR) measurements, a very sensitive and background-free technique that can detect 0.5% anisotropy in transport, we have observed...
Gespeichert in:
Veröffentlicht in: | PNAS nexus 2023-08, Vol.2 (8), p.pgad255-pgad255 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | pgad255 |
---|---|
container_issue | 8 |
container_start_page | pgad255 |
container_title | PNAS nexus |
container_volume | 2 |
creator | Wårdh, Jonatan Granath, Mats Wu, Jie Bollinger, Anthony T He, Xi Božović, Ivan |
description | Abstract
Electronic anisotropy (“nematicity”) has been detected in cuprate superconductors by various experimental techniques. Using angle-resolved transverse resistance (ARTR) measurements, a very sensitive and background-free technique that can detect 0.5% anisotropy in transport, we have observed it also in La2-xSrxCuO4 (LSCO) for 0.02 ≤ x ≤ 0.25. A central enigma in LSCO is the rotation of the nematic director (orientation of the largest longitudinal resistance) with temperature; this has not been seen before in any material. Here, we address this puzzle by measuring the angle-resolved transverse magnetoresistance (ARTMR) in LSCO. We report the discovery of colossal transverse magnetoresistance (CTMR)—an order-of-magnitude drop in the transverse resistivity in the magnetic field of 6 T. We show that the apparent rotation of the nematic director is caused by anisotropic superconducting fluctuations, which are not aligned with the normal electron fluid, consistent with coexisting bond-aligned and diagonal nematic orders. We quantify this by modeling the (magneto-)conductivity as a sum of normal (Drude) and paraconducting (Aslamazov–Larkin) channels but extended to contain anisotropic Drude and Cooper-pair effective mass tensors. Strikingly, the anisotropy of Cooper-pair stiffness is much larger than that of the normal electrons. It grows dramatically on the underdoped side, where the fluctuations become quasi-one-dimensional. Our analysis is general rather than model dependent. Still, we discuss some candidate microscopic models, including coupled strongly-correlated ladders where the transverse (interladder) phase stiffness is low compared with the longitudinal intraladder stiffness, as well as the anisotropic superconducting fluctuations expected close to the transition to a pair-density wave state. |
doi_str_mv | 10.1093/pnasnexus/pgad255 |
format | Article |
fullrecord | <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10438889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A778283302</galeid><oup_id>10.1093/pnasnexus/pgad255</oup_id><sourcerecordid>A778283302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635t-4f92664d57f94bc70c5e3eb308d0daae62a8bcbf9c8770acc2c1dba02b7b6a1a3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEolXpD-CCLLhwYFt_JLFzQtWKL6kSFzhbE2eSNUrsEDul_Hum2mXVlZCQD7bHzzujeT1F8VLwK8EbdT0HSAHv13Q9D9DJqnpSnEtdyU1dlfLpo_NZcZnSD8651FqIsnpenCldc6F4c174bRxjSjCyvEBId7gkZBMMAXNcMPmUIThk3YosRxZwguwdS-uMi4uhW132YWDzDkjWj3RdCYghMR8YMBdnAlm89x2-KJ71MCa8POwXxfePH75tP29uv376sr253bhaVXlT9o2s67KrdN-UrdPcVaiwVdx0vAPAWoJpXds3zmjNwTnpRNcCl61uaxCgLorNPm_6hfPa2nnxEyy_bQRvh3W2FBpWm9AqckgY4t_veYIn7BwGcmI8kZ2-BL-zQ7yzgpfKGNNQhtf7DDFlb5PzGd2O3AnospVkfFkLgt4eyizx54op28knh-MIAeOarDRVqSouTU3omz06wIjWhz5SXfeA2xutjTRKcUnU1T8oWh1Onqpj7yl-IhB7gVvoxxfsjz0Kbh9Gyh5Hyh5GijSvHptzVPwdIALeHXona_-f7w-OOt4p</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854350286</pqid></control><display><type>article</type><title>Colossal transverse magnetoresistance due to nematic superconducting phase fluctuations in a copper oxide</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wårdh, Jonatan ; Granath, Mats ; Wu, Jie ; Bollinger, Anthony T ; He, Xi ; Božović, Ivan</creator><contributor>Goyal, Amit</contributor><creatorcontrib>Wårdh, Jonatan ; Granath, Mats ; Wu, Jie ; Bollinger, Anthony T ; He, Xi ; Božović, Ivan ; Brookhaven National Laboratory (BNL), Upton, NY (United States) ; Goyal, Amit</creatorcontrib><description>Abstract
Electronic anisotropy (“nematicity”) has been detected in cuprate superconductors by various experimental techniques. Using angle-resolved transverse resistance (ARTR) measurements, a very sensitive and background-free technique that can detect 0.5% anisotropy in transport, we have observed it also in La2-xSrxCuO4 (LSCO) for 0.02 ≤ x ≤ 0.25. A central enigma in LSCO is the rotation of the nematic director (orientation of the largest longitudinal resistance) with temperature; this has not been seen before in any material. Here, we address this puzzle by measuring the angle-resolved transverse magnetoresistance (ARTMR) in LSCO. We report the discovery of colossal transverse magnetoresistance (CTMR)—an order-of-magnitude drop in the transverse resistivity in the magnetic field of 6 T. We show that the apparent rotation of the nematic director is caused by anisotropic superconducting fluctuations, which are not aligned with the normal electron fluid, consistent with coexisting bond-aligned and diagonal nematic orders. We quantify this by modeling the (magneto-)conductivity as a sum of normal (Drude) and paraconducting (Aslamazov–Larkin) channels but extended to contain anisotropic Drude and Cooper-pair effective mass tensors. Strikingly, the anisotropy of Cooper-pair stiffness is much larger than that of the normal electrons. It grows dramatically on the underdoped side, where the fluctuations become quasi-one-dimensional. Our analysis is general rather than model dependent. Still, we discuss some candidate microscopic models, including coupled strongly-correlated ladders where the transverse (interladder) phase stiffness is low compared with the longitudinal intraladder stiffness, as well as the anisotropic superconducting fluctuations expected close to the transition to a pair-density wave state.</description><identifier>ISSN: 2752-6542</identifier><identifier>EISSN: 2752-6542</identifier><identifier>DOI: 10.1093/pnasnexus/pgad255</identifier><identifier>PMID: 37601309</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Analysis ; Anisotropy ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Copper oxide ; Cuprite ; Den kondenserade materiens fysik ; Electric properties ; Magnetic fields ; Magnetic properties ; Magnetoresistance ; Mechanical properties ; Physical Sciences and Engineering ; Superconductors</subject><ispartof>PNAS nexus, 2023-08, Vol.2 (8), p.pgad255-pgad255</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences.</rights><rights>COPYRIGHT 2023 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c635t-4f92664d57f94bc70c5e3eb308d0daae62a8bcbf9c8770acc2c1dba02b7b6a1a3</citedby><cites>FETCH-LOGICAL-c635t-4f92664d57f94bc70c5e3eb308d0daae62a8bcbf9c8770acc2c1dba02b7b6a1a3</cites><orcidid>0000-0001-6400-7461 ; 0000-0003-3185-2014 ; 0000000331852014 ; 0000000164007461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438889/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438889/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37601309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2000461$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/327518$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Goyal, Amit</contributor><creatorcontrib>Wårdh, Jonatan</creatorcontrib><creatorcontrib>Granath, Mats</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Bollinger, Anthony T</creatorcontrib><creatorcontrib>He, Xi</creatorcontrib><creatorcontrib>Božović, Ivan</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Colossal transverse magnetoresistance due to nematic superconducting phase fluctuations in a copper oxide</title><title>PNAS nexus</title><addtitle>PNAS Nexus</addtitle><description>Abstract
Electronic anisotropy (“nematicity”) has been detected in cuprate superconductors by various experimental techniques. Using angle-resolved transverse resistance (ARTR) measurements, a very sensitive and background-free technique that can detect 0.5% anisotropy in transport, we have observed it also in La2-xSrxCuO4 (LSCO) for 0.02 ≤ x ≤ 0.25. A central enigma in LSCO is the rotation of the nematic director (orientation of the largest longitudinal resistance) with temperature; this has not been seen before in any material. Here, we address this puzzle by measuring the angle-resolved transverse magnetoresistance (ARTMR) in LSCO. We report the discovery of colossal transverse magnetoresistance (CTMR)—an order-of-magnitude drop in the transverse resistivity in the magnetic field of 6 T. We show that the apparent rotation of the nematic director is caused by anisotropic superconducting fluctuations, which are not aligned with the normal electron fluid, consistent with coexisting bond-aligned and diagonal nematic orders. We quantify this by modeling the (magneto-)conductivity as a sum of normal (Drude) and paraconducting (Aslamazov–Larkin) channels but extended to contain anisotropic Drude and Cooper-pair effective mass tensors. Strikingly, the anisotropy of Cooper-pair stiffness is much larger than that of the normal electrons. It grows dramatically on the underdoped side, where the fluctuations become quasi-one-dimensional. Our analysis is general rather than model dependent. Still, we discuss some candidate microscopic models, including coupled strongly-correlated ladders where the transverse (interladder) phase stiffness is low compared with the longitudinal intraladder stiffness, as well as the anisotropic superconducting fluctuations expected close to the transition to a pair-density wave state.</description><subject>Analysis</subject><subject>Anisotropy</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Copper oxide</subject><subject>Cuprite</subject><subject>Den kondenserade materiens fysik</subject><subject>Electric properties</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetoresistance</subject><subject>Mechanical properties</subject><subject>Physical Sciences and Engineering</subject><subject>Superconductors</subject><issn>2752-6542</issn><issn>2752-6542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkk1v1DAQhiMEolXpD-CCLLhwYFt_JLFzQtWKL6kSFzhbE2eSNUrsEDul_Hum2mXVlZCQD7bHzzujeT1F8VLwK8EbdT0HSAHv13Q9D9DJqnpSnEtdyU1dlfLpo_NZcZnSD8651FqIsnpenCldc6F4c174bRxjSjCyvEBId7gkZBMMAXNcMPmUIThk3YosRxZwguwdS-uMi4uhW132YWDzDkjWj3RdCYghMR8YMBdnAlm89x2-KJ71MCa8POwXxfePH75tP29uv376sr253bhaVXlT9o2s67KrdN-UrdPcVaiwVdx0vAPAWoJpXds3zmjNwTnpRNcCl61uaxCgLorNPm_6hfPa2nnxEyy_bQRvh3W2FBpWm9AqckgY4t_veYIn7BwGcmI8kZ2-BL-zQ7yzgpfKGNNQhtf7DDFlb5PzGd2O3AnospVkfFkLgt4eyizx54op28knh-MIAeOarDRVqSouTU3omz06wIjWhz5SXfeA2xutjTRKcUnU1T8oWh1Onqpj7yl-IhB7gVvoxxfsjz0Kbh9Gyh5Hyh5GijSvHptzVPwdIALeHXona_-f7w-OOt4p</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Wårdh, Jonatan</creator><creator>Granath, Mats</creator><creator>Wu, Jie</creator><creator>Bollinger, Anthony T</creator><creator>He, Xi</creator><creator>Božović, Ivan</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope><orcidid>https://orcid.org/0000-0001-6400-7461</orcidid><orcidid>https://orcid.org/0000-0003-3185-2014</orcidid><orcidid>https://orcid.org/0000000331852014</orcidid><orcidid>https://orcid.org/0000000164007461</orcidid></search><sort><creationdate>20230801</creationdate><title>Colossal transverse magnetoresistance due to nematic superconducting phase fluctuations in a copper oxide</title><author>Wårdh, Jonatan ; Granath, Mats ; Wu, Jie ; Bollinger, Anthony T ; He, Xi ; Božović, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635t-4f92664d57f94bc70c5e3eb308d0daae62a8bcbf9c8770acc2c1dba02b7b6a1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Anisotropy</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Copper oxide</topic><topic>Cuprite</topic><topic>Den kondenserade materiens fysik</topic><topic>Electric properties</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetoresistance</topic><topic>Mechanical properties</topic><topic>Physical Sciences and Engineering</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wårdh, Jonatan</creatorcontrib><creatorcontrib>Granath, Mats</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><creatorcontrib>Bollinger, Anthony T</creatorcontrib><creatorcontrib>He, Xi</creatorcontrib><creatorcontrib>Božović, Ivan</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>PNAS nexus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wårdh, Jonatan</au><au>Granath, Mats</au><au>Wu, Jie</au><au>Bollinger, Anthony T</au><au>He, Xi</au><au>Božović, Ivan</au><au>Goyal, Amit</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colossal transverse magnetoresistance due to nematic superconducting phase fluctuations in a copper oxide</atitle><jtitle>PNAS nexus</jtitle><addtitle>PNAS Nexus</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>2</volume><issue>8</issue><spage>pgad255</spage><epage>pgad255</epage><pages>pgad255-pgad255</pages><issn>2752-6542</issn><eissn>2752-6542</eissn><abstract>Abstract
Electronic anisotropy (“nematicity”) has been detected in cuprate superconductors by various experimental techniques. Using angle-resolved transverse resistance (ARTR) measurements, a very sensitive and background-free technique that can detect 0.5% anisotropy in transport, we have observed it also in La2-xSrxCuO4 (LSCO) for 0.02 ≤ x ≤ 0.25. A central enigma in LSCO is the rotation of the nematic director (orientation of the largest longitudinal resistance) with temperature; this has not been seen before in any material. Here, we address this puzzle by measuring the angle-resolved transverse magnetoresistance (ARTMR) in LSCO. We report the discovery of colossal transverse magnetoresistance (CTMR)—an order-of-magnitude drop in the transverse resistivity in the magnetic field of 6 T. We show that the apparent rotation of the nematic director is caused by anisotropic superconducting fluctuations, which are not aligned with the normal electron fluid, consistent with coexisting bond-aligned and diagonal nematic orders. We quantify this by modeling the (magneto-)conductivity as a sum of normal (Drude) and paraconducting (Aslamazov–Larkin) channels but extended to contain anisotropic Drude and Cooper-pair effective mass tensors. Strikingly, the anisotropy of Cooper-pair stiffness is much larger than that of the normal electrons. It grows dramatically on the underdoped side, where the fluctuations become quasi-one-dimensional. Our analysis is general rather than model dependent. Still, we discuss some candidate microscopic models, including coupled strongly-correlated ladders where the transverse (interladder) phase stiffness is low compared with the longitudinal intraladder stiffness, as well as the anisotropic superconducting fluctuations expected close to the transition to a pair-density wave state.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>37601309</pmid><doi>10.1093/pnasnexus/pgad255</doi><orcidid>https://orcid.org/0000-0001-6400-7461</orcidid><orcidid>https://orcid.org/0000-0003-3185-2014</orcidid><orcidid>https://orcid.org/0000000331852014</orcidid><orcidid>https://orcid.org/0000000164007461</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2752-6542 |
ispartof | PNAS nexus, 2023-08, Vol.2 (8), p.pgad255-pgad255 |
issn | 2752-6542 2752-6542 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10438889 |
source | Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Analysis Anisotropy Condensed Matter Physics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Copper oxide Cuprite Den kondenserade materiens fysik Electric properties Magnetic fields Magnetic properties Magnetoresistance Mechanical properties Physical Sciences and Engineering Superconductors |
title | Colossal transverse magnetoresistance due to nematic superconducting phase fluctuations in a copper oxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colossal%20transverse%20magnetoresistance%20due%20to%20nematic%20superconducting%20phase%20fluctuations%20in%20a%20copper%20oxide&rft.jtitle=PNAS%20nexus&rft.au=W%C3%A5rdh,%20Jonatan&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2023-08-01&rft.volume=2&rft.issue=8&rft.spage=pgad255&rft.epage=pgad255&rft.pages=pgad255-pgad255&rft.issn=2752-6542&rft.eissn=2752-6542&rft_id=info:doi/10.1093/pnasnexus/pgad255&rft_dat=%3Cgale_swepu%3EA778283302%3C/gale_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854350286&rft_id=info:pmid/37601309&rft_galeid=A778283302&rft_oup_id=10.1093/pnasnexus/pgad255&rfr_iscdi=true |