Kinetics and Mechanism of Azole n−π-Catalyzed Amine Acylation

Azole anions are highly competent in the activation of weak acyl donors, but, unlike neutral (aprotic) Lewis bases, are not yet widely applied as acylation catalysts. Using a combination of in situ and stopped-flow 1H/19F NMR spectroscopy, kinetics, isotopic labeling, 1H DOSY, and electronic structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2023-08, Vol.145 (32), p.18126-18140
Hauptverfasser: Dale, Harvey J. A., Hodges, George R., Lloyd-Jones, Guy C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18140
container_issue 32
container_start_page 18126
container_title Journal of the American Chemical Society
container_volume 145
creator Dale, Harvey J. A.
Hodges, George R.
Lloyd-Jones, Guy C.
description Azole anions are highly competent in the activation of weak acyl donors, but, unlike neutral (aprotic) Lewis bases, are not yet widely applied as acylation catalysts. Using a combination of in situ and stopped-flow 1H/19F NMR spectroscopy, kinetics, isotopic labeling, 1H DOSY, and electronic structure calculations, we have investigated azole-catalyzed aminolysis of p-fluorophenyl acetate. The global kinetics have been elucidated under four sets of conditions, and the key elementary steps underpinning catalysis deconvoluted using a range of intermediates and transition state probes. While all evidence points to an overarching mechanism involving n−π* catalysis via N-acylated azole intermediates, a diverse array of kinetic regimes emerges from this framework. Even seemingly minor changes to the solvent, auxiliary base, or azole catalyst can elicit profound changes in the temporal evolution, thermal sensitivity, and progressive inhibition of catalysis. These observations can only be rationalized by taking a holistic view of the mechanism and a set of limiting regimes for the kinetics. Overall, the analysis of 18 azole catalysts spanning nearly 10 orders of magnitude in acidity highlights the pitfall of pursuing ever more nucleophilic catalysts without regard for catalyst speciation.
doi_str_mv 10.1021/jacs.3c06258
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10436283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844681118</sourcerecordid><originalsourceid>FETCH-LOGICAL-a418t-a1ff8bfb887b00ed0dd040a22c227927346b8abdcb9bc4e602a3458e180536733</originalsourceid><addsrcrecordid>eNptkLtOwzAUhi0EoqWwMaOMDKQcX-K4E0QVN1HEArPlOA5NldglTpHaiZGZF-MdeBJStRSQmI6Ozn85-hA6xNDHQPDpRGnfpxo4icQW6uKIQBhhwrdRFwBIGAtOO2jP-0m7MiLwLurQOCKcCuii89vCmqbQPlA2C-6MHitb-CpweZAsXGkC-_n2_vEaDlWjyvnCZEFStY4g0fNSNYWz-2gnV6U3B-vZQ4-XFw_D63B0f3UzTEahYlg0ocJ5LtI8FSJOAUwGWQYMFCGakHhAYsp4KlSa6XSQamY4EEVZJAwWEFEeU9pDZ6vc6SytTKaNbWpVymldVKqeS6cK-fdii7F8ci8SA6OciGXC8Tqhds8z4xtZFV6bslTWuJmXRDDGBcZYtNKTlVTXzvva5JseDHJJXS6pyzX1Vn70-7eN-BvzT_XSNXGz2rao_s_6AnhdjFM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844681118</pqid></control><display><type>article</type><title>Kinetics and Mechanism of Azole n−π-Catalyzed Amine Acylation</title><source>American Chemical Society Journals</source><creator>Dale, Harvey J. A. ; Hodges, George R. ; Lloyd-Jones, Guy C.</creator><creatorcontrib>Dale, Harvey J. A. ; Hodges, George R. ; Lloyd-Jones, Guy C.</creatorcontrib><description>Azole anions are highly competent in the activation of weak acyl donors, but, unlike neutral (aprotic) Lewis bases, are not yet widely applied as acylation catalysts. Using a combination of in situ and stopped-flow 1H/19F NMR spectroscopy, kinetics, isotopic labeling, 1H DOSY, and electronic structure calculations, we have investigated azole-catalyzed aminolysis of p-fluorophenyl acetate. The global kinetics have been elucidated under four sets of conditions, and the key elementary steps underpinning catalysis deconvoluted using a range of intermediates and transition state probes. While all evidence points to an overarching mechanism involving n−π* catalysis via N-acylated azole intermediates, a diverse array of kinetic regimes emerges from this framework. Even seemingly minor changes to the solvent, auxiliary base, or azole catalyst can elicit profound changes in the temporal evolution, thermal sensitivity, and progressive inhibition of catalysis. These observations can only be rationalized by taking a holistic view of the mechanism and a set of limiting regimes for the kinetics. Overall, the analysis of 18 azole catalysts spanning nearly 10 orders of magnitude in acidity highlights the pitfall of pursuing ever more nucleophilic catalysts without regard for catalyst speciation.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c06258</identifier><identifier>PMID: 37526380</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2023-08, Vol.145 (32), p.18126-18140</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a418t-a1ff8bfb887b00ed0dd040a22c227927346b8abdcb9bc4e602a3458e180536733</citedby><cites>FETCH-LOGICAL-a418t-a1ff8bfb887b00ed0dd040a22c227927346b8abdcb9bc4e602a3458e180536733</cites><orcidid>0000-0001-7145-0920 ; 0000-0003-2128-6864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c06258$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c06258$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37526380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dale, Harvey J. A.</creatorcontrib><creatorcontrib>Hodges, George R.</creatorcontrib><creatorcontrib>Lloyd-Jones, Guy C.</creatorcontrib><title>Kinetics and Mechanism of Azole n−π-Catalyzed Amine Acylation</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Azole anions are highly competent in the activation of weak acyl donors, but, unlike neutral (aprotic) Lewis bases, are not yet widely applied as acylation catalysts. Using a combination of in situ and stopped-flow 1H/19F NMR spectroscopy, kinetics, isotopic labeling, 1H DOSY, and electronic structure calculations, we have investigated azole-catalyzed aminolysis of p-fluorophenyl acetate. The global kinetics have been elucidated under four sets of conditions, and the key elementary steps underpinning catalysis deconvoluted using a range of intermediates and transition state probes. While all evidence points to an overarching mechanism involving n−π* catalysis via N-acylated azole intermediates, a diverse array of kinetic regimes emerges from this framework. Even seemingly minor changes to the solvent, auxiliary base, or azole catalyst can elicit profound changes in the temporal evolution, thermal sensitivity, and progressive inhibition of catalysis. These observations can only be rationalized by taking a holistic view of the mechanism and a set of limiting regimes for the kinetics. Overall, the analysis of 18 azole catalysts spanning nearly 10 orders of magnitude in acidity highlights the pitfall of pursuing ever more nucleophilic catalysts without regard for catalyst speciation.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkLtOwzAUhi0EoqWwMaOMDKQcX-K4E0QVN1HEArPlOA5NldglTpHaiZGZF-MdeBJStRSQmI6Ozn85-hA6xNDHQPDpRGnfpxo4icQW6uKIQBhhwrdRFwBIGAtOO2jP-0m7MiLwLurQOCKcCuii89vCmqbQPlA2C-6MHitb-CpweZAsXGkC-_n2_vEaDlWjyvnCZEFStY4g0fNSNYWz-2gnV6U3B-vZQ4-XFw_D63B0f3UzTEahYlg0ocJ5LtI8FSJOAUwGWQYMFCGakHhAYsp4KlSa6XSQamY4EEVZJAwWEFEeU9pDZ6vc6SytTKaNbWpVymldVKqeS6cK-fdii7F8ci8SA6OciGXC8Tqhds8z4xtZFV6bslTWuJmXRDDGBcZYtNKTlVTXzvva5JseDHJJXS6pyzX1Vn70-7eN-BvzT_XSNXGz2rao_s_6AnhdjFM</recordid><startdate>20230816</startdate><enddate>20230816</enddate><creator>Dale, Harvey J. A.</creator><creator>Hodges, George R.</creator><creator>Lloyd-Jones, Guy C.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7145-0920</orcidid><orcidid>https://orcid.org/0000-0003-2128-6864</orcidid></search><sort><creationdate>20230816</creationdate><title>Kinetics and Mechanism of Azole n−π-Catalyzed Amine Acylation</title><author>Dale, Harvey J. A. ; Hodges, George R. ; Lloyd-Jones, Guy C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a418t-a1ff8bfb887b00ed0dd040a22c227927346b8abdcb9bc4e602a3458e180536733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dale, Harvey J. A.</creatorcontrib><creatorcontrib>Hodges, George R.</creatorcontrib><creatorcontrib>Lloyd-Jones, Guy C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dale, Harvey J. A.</au><au>Hodges, George R.</au><au>Lloyd-Jones, Guy C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics and Mechanism of Azole n−π-Catalyzed Amine Acylation</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-08-16</date><risdate>2023</risdate><volume>145</volume><issue>32</issue><spage>18126</spage><epage>18140</epage><pages>18126-18140</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Azole anions are highly competent in the activation of weak acyl donors, but, unlike neutral (aprotic) Lewis bases, are not yet widely applied as acylation catalysts. Using a combination of in situ and stopped-flow 1H/19F NMR spectroscopy, kinetics, isotopic labeling, 1H DOSY, and electronic structure calculations, we have investigated azole-catalyzed aminolysis of p-fluorophenyl acetate. The global kinetics have been elucidated under four sets of conditions, and the key elementary steps underpinning catalysis deconvoluted using a range of intermediates and transition state probes. While all evidence points to an overarching mechanism involving n−π* catalysis via N-acylated azole intermediates, a diverse array of kinetic regimes emerges from this framework. Even seemingly minor changes to the solvent, auxiliary base, or azole catalyst can elicit profound changes in the temporal evolution, thermal sensitivity, and progressive inhibition of catalysis. These observations can only be rationalized by taking a holistic view of the mechanism and a set of limiting regimes for the kinetics. Overall, the analysis of 18 azole catalysts spanning nearly 10 orders of magnitude in acidity highlights the pitfall of pursuing ever more nucleophilic catalysts without regard for catalyst speciation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37526380</pmid><doi>10.1021/jacs.3c06258</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7145-0920</orcidid><orcidid>https://orcid.org/0000-0003-2128-6864</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2023-08, Vol.145 (32), p.18126-18140
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10436283
source American Chemical Society Journals
title Kinetics and Mechanism of Azole n−π-Catalyzed Amine Acylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20and%20Mechanism%20of%20Azole%20n%E2%88%92%CF%80-Catalyzed%20Amine%20Acylation&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Dale,%20Harvey%20J.%20A.&rft.date=2023-08-16&rft.volume=145&rft.issue=32&rft.spage=18126&rft.epage=18140&rft.pages=18126-18140&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c06258&rft_dat=%3Cproquest_pubme%3E2844681118%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844681118&rft_id=info:pmid/37526380&rfr_iscdi=true