Cardiac Magnetic Resonance Imaging to Determine Single Ventricle Function in a Pediatric Population is Feasible in a Large Trial Setting: Experience from the Single Ventricle Reconstruction Trial Longitudinal Follow up
The Single Ventricle Reconstruction (SVR) Trial was a randomized prospective trial designed to determine survival advantage of the modified Blalock-Taussig-Thomas shunt (BTTS) vs the right ventricle to pulmonary artery conduit (RVPAS) for patients with hypoplastic left heart syndrome. The primary ai...
Gespeichert in:
Veröffentlicht in: | Pediatric cardiology 2023-10, Vol.44 (7), p.1454-1461 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1461 |
---|---|
container_issue | 7 |
container_start_page | 1454 |
container_title | Pediatric cardiology |
container_volume | 44 |
creator | Detterich, Jon Taylor, Michael D. Slesnick, Timothy C. DiLorenzo, Michael Hlavacek, Anthony Lam, Christopher Z. Sachdeva, Shagun Lang, Sean M. Campbell, M. Jay Gerardin, Jennifer Whitehead, Kevin K. Rathod, Rahul H. Cartoski, Mark Menon, Shaji Trachtenberg, Felicia Gongwer, Russell Newburger, Jane Goldberg, Caren Dorfman, Adam L. |
description | The Single Ventricle Reconstruction (SVR) Trial was a randomized prospective trial designed to determine survival advantage of the modified Blalock-Taussig-Thomas shunt (BTTS) vs the right ventricle to pulmonary artery conduit (RVPAS) for patients with hypoplastic left heart syndrome. The primary aim of the long-term follow-up (SVRIII) was to determine the impact of shunt type on RV function. In this work, we describe the use of CMR in a large cohort follow up from the SVR Trial as a focused study of single ventricle function. The SVRIII protocol included short axis steady-state free precession imaging to assess single ventricle systolic function and flow quantification. There were 313 eligible SVRIII participants and 237 enrolled, ages ranging from 10 to 12.5 years. 177/237 (75%) participants underwent CMR. The most common reasons for not undergoing CMR exam were requirement for anesthesia (
n
= 14) or ICD/pacemaker (
n
= 11). A total of 168/177 (94%) CMR studies were diagnostic for RVEF. Median exam time was 54 [IQR 40–74] minutes, cine function exam time 20 [IQR 14–27] minutes, and flow quantification time 18 [IQR 12–25] minutes. There were 69/177 (39%) studies noted to have intra-thoracic artifacts, most common being susceptibility artifact from intra-thoracic metal. Not all artifacts resulted in non-diagnostic exams. These data describe the use and limitations of CMR for the assessment of cardiac function in a prospective trial setting in a grade-school-aged pediatric population with congenital heart disease. Many of the limitations are expected to decrease with the continued advancement of CMR technology. |
doi_str_mv | 10.1007/s00246-023-03216-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10435402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A761355573</galeid><sourcerecordid>A761355573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-f9a4c6f4baafec0317fc9d445e929a43901f28a7710e233427a866d4e17785e23</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEotvCC3BAlrhwSfHfOMsFVUsXKi2iagtXy-tMUleJvbUdKK_K0-A0paJShXywPd9vvhknUxSvCD4kGMt3EWPKqxJTVmJGSVXWT4oF4YyWZCnJ02KBiaQlrjjbK_ZjvMIY17gWz4s9JjkWXFSL4vdKh8Zqg77ozkGyBp1B9E47A-hk0J11HUoefYQEYbAO0HmO9IC-g0vBmnxaj84k6x2yDml0CtltUtCp3429npWI1qCj3Wb8ltro0AG6CFb36BxSyp7v0fHNDoKFqXIb_IDS5SPVzsB4F1MY55qzxca7zqaxsS5f1r7v_U807l4Uz1rdR3h5tx8U39bHF6vP5ebrp5PV0aY0gvBUtkvNTdXyrdYtGMyIbM2y4VzAkmaJLTFpaa2lJBgoY5xKXVdVw4FIWYscOig-zL67cTtAY6Zeda92wQ46_FJeW_VQcfZSdf6HIpgzwfHk8PbOIfjrEWJSg40G-l478GNUtGas4kIwntE3M9rpHpR1rc-WZsLVkawIE0JIlqnDR6i8Ghhs_oDQ2hx_kEDnBBN8jAHa-_YJVtOwqXnYVO5W3Q6bqnPS638ffp_yd7oywGYgZsl1ENSVH0P-SfF_tn8ANlbjNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833645534</pqid></control><display><type>article</type><title>Cardiac Magnetic Resonance Imaging to Determine Single Ventricle Function in a Pediatric Population is Feasible in a Large Trial Setting: Experience from the Single Ventricle Reconstruction Trial Longitudinal Follow up</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Detterich, Jon ; Taylor, Michael D. ; Slesnick, Timothy C. ; DiLorenzo, Michael ; Hlavacek, Anthony ; Lam, Christopher Z. ; Sachdeva, Shagun ; Lang, Sean M. ; Campbell, M. Jay ; Gerardin, Jennifer ; Whitehead, Kevin K. ; Rathod, Rahul H. ; Cartoski, Mark ; Menon, Shaji ; Trachtenberg, Felicia ; Gongwer, Russell ; Newburger, Jane ; Goldberg, Caren ; Dorfman, Adam L.</creator><creatorcontrib>Detterich, Jon ; Taylor, Michael D. ; Slesnick, Timothy C. ; DiLorenzo, Michael ; Hlavacek, Anthony ; Lam, Christopher Z. ; Sachdeva, Shagun ; Lang, Sean M. ; Campbell, M. Jay ; Gerardin, Jennifer ; Whitehead, Kevin K. ; Rathod, Rahul H. ; Cartoski, Mark ; Menon, Shaji ; Trachtenberg, Felicia ; Gongwer, Russell ; Newburger, Jane ; Goldberg, Caren ; Dorfman, Adam L. ; the Pediatric Heart Network Investigators</creatorcontrib><description>The Single Ventricle Reconstruction (SVR) Trial was a randomized prospective trial designed to determine survival advantage of the modified Blalock-Taussig-Thomas shunt (BTTS) vs the right ventricle to pulmonary artery conduit (RVPAS) for patients with hypoplastic left heart syndrome. The primary aim of the long-term follow-up (SVRIII) was to determine the impact of shunt type on RV function. In this work, we describe the use of CMR in a large cohort follow up from the SVR Trial as a focused study of single ventricle function. The SVRIII protocol included short axis steady-state free precession imaging to assess single ventricle systolic function and flow quantification. There were 313 eligible SVRIII participants and 237 enrolled, ages ranging from 10 to 12.5 years. 177/237 (75%) participants underwent CMR. The most common reasons for not undergoing CMR exam were requirement for anesthesia (
n
= 14) or ICD/pacemaker (
n
= 11). A total of 168/177 (94%) CMR studies were diagnostic for RVEF. Median exam time was 54 [IQR 40–74] minutes, cine function exam time 20 [IQR 14–27] minutes, and flow quantification time 18 [IQR 12–25] minutes. There were 69/177 (39%) studies noted to have intra-thoracic artifacts, most common being susceptibility artifact from intra-thoracic metal. Not all artifacts resulted in non-diagnostic exams. These data describe the use and limitations of CMR for the assessment of cardiac function in a prospective trial setting in a grade-school-aged pediatric population with congenital heart disease. Many of the limitations are expected to decrease with the continued advancement of CMR technology.</description><identifier>ISSN: 0172-0643</identifier><identifier>EISSN: 1432-1971</identifier><identifier>DOI: 10.1007/s00246-023-03216-8</identifier><identifier>PMID: 37405456</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cardiac Surgery ; Cardiology ; Child ; Congenital heart disease ; Follow-Up Studies ; Genetic disorders ; Heart ; Heart diseases ; Heart Ventricles - abnormalities ; Heart Ventricles - diagnostic imaging ; Heart Ventricles - surgery ; Humans ; Hypoplastic Left Heart Syndrome - diagnostic imaging ; Hypoplastic Left Heart Syndrome - surgery ; Magnetic Resonance Imaging ; Magnetic Resonance Imaging, Cine ; Medical imaging equipment ; Medicine ; Medicine & Public Health ; Norwood Procedures - methods ; Pediatrics ; Prospective Studies ; Pulmonary Artery - abnormalities ; Pulmonary Artery - diagnostic imaging ; Pulmonary Artery - surgery ; Treatment Outcome ; Univentricular Heart ; Vascular Surgery</subject><ispartof>Pediatric cardiology, 2023-10, Vol.44 (7), p.1454-1461</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-f9a4c6f4baafec0317fc9d445e929a43901f28a7710e233427a866d4e17785e23</citedby><cites>FETCH-LOGICAL-c514t-f9a4c6f4baafec0317fc9d445e929a43901f28a7710e233427a866d4e17785e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00246-023-03216-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00246-023-03216-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37405456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Detterich, Jon</creatorcontrib><creatorcontrib>Taylor, Michael D.</creatorcontrib><creatorcontrib>Slesnick, Timothy C.</creatorcontrib><creatorcontrib>DiLorenzo, Michael</creatorcontrib><creatorcontrib>Hlavacek, Anthony</creatorcontrib><creatorcontrib>Lam, Christopher Z.</creatorcontrib><creatorcontrib>Sachdeva, Shagun</creatorcontrib><creatorcontrib>Lang, Sean M.</creatorcontrib><creatorcontrib>Campbell, M. Jay</creatorcontrib><creatorcontrib>Gerardin, Jennifer</creatorcontrib><creatorcontrib>Whitehead, Kevin K.</creatorcontrib><creatorcontrib>Rathod, Rahul H.</creatorcontrib><creatorcontrib>Cartoski, Mark</creatorcontrib><creatorcontrib>Menon, Shaji</creatorcontrib><creatorcontrib>Trachtenberg, Felicia</creatorcontrib><creatorcontrib>Gongwer, Russell</creatorcontrib><creatorcontrib>Newburger, Jane</creatorcontrib><creatorcontrib>Goldberg, Caren</creatorcontrib><creatorcontrib>Dorfman, Adam L.</creatorcontrib><creatorcontrib>the Pediatric Heart Network Investigators</creatorcontrib><title>Cardiac Magnetic Resonance Imaging to Determine Single Ventricle Function in a Pediatric Population is Feasible in a Large Trial Setting: Experience from the Single Ventricle Reconstruction Trial Longitudinal Follow up</title><title>Pediatric cardiology</title><addtitle>Pediatr Cardiol</addtitle><addtitle>Pediatr Cardiol</addtitle><description>The Single Ventricle Reconstruction (SVR) Trial was a randomized prospective trial designed to determine survival advantage of the modified Blalock-Taussig-Thomas shunt (BTTS) vs the right ventricle to pulmonary artery conduit (RVPAS) for patients with hypoplastic left heart syndrome. The primary aim of the long-term follow-up (SVRIII) was to determine the impact of shunt type on RV function. In this work, we describe the use of CMR in a large cohort follow up from the SVR Trial as a focused study of single ventricle function. The SVRIII protocol included short axis steady-state free precession imaging to assess single ventricle systolic function and flow quantification. There were 313 eligible SVRIII participants and 237 enrolled, ages ranging from 10 to 12.5 years. 177/237 (75%) participants underwent CMR. The most common reasons for not undergoing CMR exam were requirement for anesthesia (
n
= 14) or ICD/pacemaker (
n
= 11). A total of 168/177 (94%) CMR studies were diagnostic for RVEF. Median exam time was 54 [IQR 40–74] minutes, cine function exam time 20 [IQR 14–27] minutes, and flow quantification time 18 [IQR 12–25] minutes. There were 69/177 (39%) studies noted to have intra-thoracic artifacts, most common being susceptibility artifact from intra-thoracic metal. Not all artifacts resulted in non-diagnostic exams. These data describe the use and limitations of CMR for the assessment of cardiac function in a prospective trial setting in a grade-school-aged pediatric population with congenital heart disease. Many of the limitations are expected to decrease with the continued advancement of CMR technology.</description><subject>Cardiac Surgery</subject><subject>Cardiology</subject><subject>Child</subject><subject>Congenital heart disease</subject><subject>Follow-Up Studies</subject><subject>Genetic disorders</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Heart Ventricles - abnormalities</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>Heart Ventricles - surgery</subject><subject>Humans</subject><subject>Hypoplastic Left Heart Syndrome - diagnostic imaging</subject><subject>Hypoplastic Left Heart Syndrome - surgery</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Imaging, Cine</subject><subject>Medical imaging equipment</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Norwood Procedures - methods</subject><subject>Pediatrics</subject><subject>Prospective Studies</subject><subject>Pulmonary Artery - abnormalities</subject><subject>Pulmonary Artery - diagnostic imaging</subject><subject>Pulmonary Artery - surgery</subject><subject>Treatment Outcome</subject><subject>Univentricular Heart</subject><subject>Vascular Surgery</subject><issn>0172-0643</issn><issn>1432-1971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9ks9u1DAQxiMEotvCC3BAlrhwSfHfOMsFVUsXKi2iagtXy-tMUleJvbUdKK_K0-A0paJShXywPd9vvhknUxSvCD4kGMt3EWPKqxJTVmJGSVXWT4oF4YyWZCnJ02KBiaQlrjjbK_ZjvMIY17gWz4s9JjkWXFSL4vdKh8Zqg77ozkGyBp1B9E47A-hk0J11HUoefYQEYbAO0HmO9IC-g0vBmnxaj84k6x2yDml0CtltUtCp3429npWI1qCj3Wb8ltro0AG6CFb36BxSyp7v0fHNDoKFqXIb_IDS5SPVzsB4F1MY55qzxca7zqaxsS5f1r7v_U807l4Uz1rdR3h5tx8U39bHF6vP5ebrp5PV0aY0gvBUtkvNTdXyrdYtGMyIbM2y4VzAkmaJLTFpaa2lJBgoY5xKXVdVw4FIWYscOig-zL67cTtAY6Zeda92wQ46_FJeW_VQcfZSdf6HIpgzwfHk8PbOIfjrEWJSg40G-l478GNUtGas4kIwntE3M9rpHpR1rc-WZsLVkawIE0JIlqnDR6i8Ghhs_oDQ2hx_kEDnBBN8jAHa-_YJVtOwqXnYVO5W3Q6bqnPS638ffp_yd7oywGYgZsl1ENSVH0P-SfF_tn8ANlbjNA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Detterich, Jon</creator><creator>Taylor, Michael D.</creator><creator>Slesnick, Timothy C.</creator><creator>DiLorenzo, Michael</creator><creator>Hlavacek, Anthony</creator><creator>Lam, Christopher Z.</creator><creator>Sachdeva, Shagun</creator><creator>Lang, Sean M.</creator><creator>Campbell, M. Jay</creator><creator>Gerardin, Jennifer</creator><creator>Whitehead, Kevin K.</creator><creator>Rathod, Rahul H.</creator><creator>Cartoski, Mark</creator><creator>Menon, Shaji</creator><creator>Trachtenberg, Felicia</creator><creator>Gongwer, Russell</creator><creator>Newburger, Jane</creator><creator>Goldberg, Caren</creator><creator>Dorfman, Adam L.</creator><general>Springer US</general><general>Springer</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231001</creationdate><title>Cardiac Magnetic Resonance Imaging to Determine Single Ventricle Function in a Pediatric Population is Feasible in a Large Trial Setting: Experience from the Single Ventricle Reconstruction Trial Longitudinal Follow up</title><author>Detterich, Jon ; Taylor, Michael D. ; Slesnick, Timothy C. ; DiLorenzo, Michael ; Hlavacek, Anthony ; Lam, Christopher Z. ; Sachdeva, Shagun ; Lang, Sean M. ; Campbell, M. Jay ; Gerardin, Jennifer ; Whitehead, Kevin K. ; Rathod, Rahul H. ; Cartoski, Mark ; Menon, Shaji ; Trachtenberg, Felicia ; Gongwer, Russell ; Newburger, Jane ; Goldberg, Caren ; Dorfman, Adam L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-f9a4c6f4baafec0317fc9d445e929a43901f28a7710e233427a866d4e17785e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cardiac Surgery</topic><topic>Cardiology</topic><topic>Child</topic><topic>Congenital heart disease</topic><topic>Follow-Up Studies</topic><topic>Genetic disorders</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Heart Ventricles - abnormalities</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>Heart Ventricles - surgery</topic><topic>Humans</topic><topic>Hypoplastic Left Heart Syndrome - diagnostic imaging</topic><topic>Hypoplastic Left Heart Syndrome - surgery</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Imaging, Cine</topic><topic>Medical imaging equipment</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Norwood Procedures - methods</topic><topic>Pediatrics</topic><topic>Prospective Studies</topic><topic>Pulmonary Artery - abnormalities</topic><topic>Pulmonary Artery - diagnostic imaging</topic><topic>Pulmonary Artery - surgery</topic><topic>Treatment Outcome</topic><topic>Univentricular Heart</topic><topic>Vascular Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Detterich, Jon</creatorcontrib><creatorcontrib>Taylor, Michael D.</creatorcontrib><creatorcontrib>Slesnick, Timothy C.</creatorcontrib><creatorcontrib>DiLorenzo, Michael</creatorcontrib><creatorcontrib>Hlavacek, Anthony</creatorcontrib><creatorcontrib>Lam, Christopher Z.</creatorcontrib><creatorcontrib>Sachdeva, Shagun</creatorcontrib><creatorcontrib>Lang, Sean M.</creatorcontrib><creatorcontrib>Campbell, M. Jay</creatorcontrib><creatorcontrib>Gerardin, Jennifer</creatorcontrib><creatorcontrib>Whitehead, Kevin K.</creatorcontrib><creatorcontrib>Rathod, Rahul H.</creatorcontrib><creatorcontrib>Cartoski, Mark</creatorcontrib><creatorcontrib>Menon, Shaji</creatorcontrib><creatorcontrib>Trachtenberg, Felicia</creatorcontrib><creatorcontrib>Gongwer, Russell</creatorcontrib><creatorcontrib>Newburger, Jane</creatorcontrib><creatorcontrib>Goldberg, Caren</creatorcontrib><creatorcontrib>Dorfman, Adam L.</creatorcontrib><creatorcontrib>the Pediatric Heart Network Investigators</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pediatric cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Detterich, Jon</au><au>Taylor, Michael D.</au><au>Slesnick, Timothy C.</au><au>DiLorenzo, Michael</au><au>Hlavacek, Anthony</au><au>Lam, Christopher Z.</au><au>Sachdeva, Shagun</au><au>Lang, Sean M.</au><au>Campbell, M. Jay</au><au>Gerardin, Jennifer</au><au>Whitehead, Kevin K.</au><au>Rathod, Rahul H.</au><au>Cartoski, Mark</au><au>Menon, Shaji</au><au>Trachtenberg, Felicia</au><au>Gongwer, Russell</au><au>Newburger, Jane</au><au>Goldberg, Caren</au><au>Dorfman, Adam L.</au><aucorp>the Pediatric Heart Network Investigators</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiac Magnetic Resonance Imaging to Determine Single Ventricle Function in a Pediatric Population is Feasible in a Large Trial Setting: Experience from the Single Ventricle Reconstruction Trial Longitudinal Follow up</atitle><jtitle>Pediatric cardiology</jtitle><stitle>Pediatr Cardiol</stitle><addtitle>Pediatr Cardiol</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>44</volume><issue>7</issue><spage>1454</spage><epage>1461</epage><pages>1454-1461</pages><issn>0172-0643</issn><eissn>1432-1971</eissn><abstract>The Single Ventricle Reconstruction (SVR) Trial was a randomized prospective trial designed to determine survival advantage of the modified Blalock-Taussig-Thomas shunt (BTTS) vs the right ventricle to pulmonary artery conduit (RVPAS) for patients with hypoplastic left heart syndrome. The primary aim of the long-term follow-up (SVRIII) was to determine the impact of shunt type on RV function. In this work, we describe the use of CMR in a large cohort follow up from the SVR Trial as a focused study of single ventricle function. The SVRIII protocol included short axis steady-state free precession imaging to assess single ventricle systolic function and flow quantification. There were 313 eligible SVRIII participants and 237 enrolled, ages ranging from 10 to 12.5 years. 177/237 (75%) participants underwent CMR. The most common reasons for not undergoing CMR exam were requirement for anesthesia (
n
= 14) or ICD/pacemaker (
n
= 11). A total of 168/177 (94%) CMR studies were diagnostic for RVEF. Median exam time was 54 [IQR 40–74] minutes, cine function exam time 20 [IQR 14–27] minutes, and flow quantification time 18 [IQR 12–25] minutes. There were 69/177 (39%) studies noted to have intra-thoracic artifacts, most common being susceptibility artifact from intra-thoracic metal. Not all artifacts resulted in non-diagnostic exams. These data describe the use and limitations of CMR for the assessment of cardiac function in a prospective trial setting in a grade-school-aged pediatric population with congenital heart disease. Many of the limitations are expected to decrease with the continued advancement of CMR technology.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37405456</pmid><doi>10.1007/s00246-023-03216-8</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0172-0643 |
ispartof | Pediatric cardiology, 2023-10, Vol.44 (7), p.1454-1461 |
issn | 0172-0643 1432-1971 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10435402 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Cardiac Surgery Cardiology Child Congenital heart disease Follow-Up Studies Genetic disorders Heart Heart diseases Heart Ventricles - abnormalities Heart Ventricles - diagnostic imaging Heart Ventricles - surgery Humans Hypoplastic Left Heart Syndrome - diagnostic imaging Hypoplastic Left Heart Syndrome - surgery Magnetic Resonance Imaging Magnetic Resonance Imaging, Cine Medical imaging equipment Medicine Medicine & Public Health Norwood Procedures - methods Pediatrics Prospective Studies Pulmonary Artery - abnormalities Pulmonary Artery - diagnostic imaging Pulmonary Artery - surgery Treatment Outcome Univentricular Heart Vascular Surgery |
title | Cardiac Magnetic Resonance Imaging to Determine Single Ventricle Function in a Pediatric Population is Feasible in a Large Trial Setting: Experience from the Single Ventricle Reconstruction Trial Longitudinal Follow up |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiac%20Magnetic%20Resonance%20Imaging%20to%20Determine%20Single%20Ventricle%20Function%20in%20a%20Pediatric%20Population%20is%20Feasible%20in%20a%20Large%20Trial%20Setting:%20Experience%20from%20the%20Single%20Ventricle%20Reconstruction%20Trial%20Longitudinal%20Follow%20up&rft.jtitle=Pediatric%20cardiology&rft.au=Detterich,%20Jon&rft.aucorp=the%20Pediatric%20Heart%20Network%20Investigators&rft.date=2023-10-01&rft.volume=44&rft.issue=7&rft.spage=1454&rft.epage=1461&rft.pages=1454-1461&rft.issn=0172-0643&rft.eissn=1432-1971&rft_id=info:doi/10.1007/s00246-023-03216-8&rft_dat=%3Cgale_pubme%3EA761355573%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833645534&rft_id=info:pmid/37405456&rft_galeid=A761355573&rfr_iscdi=true |