Endoplasmic reticulum network heterogeneity guides diffusive transport and kinetics

The endoplasmic reticulum (ER) is a dynamic network of interconnected sheets and tubules that orchestrates the distribution of lipids, ions, and proteins throughout the cell. The impact of its complex, dynamic morphology on its function as an intracellular transport hub remains poorly understood. To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2023-08, Vol.122 (15), p.3191-3205
Hauptverfasser: Scott, Zubenelgenubi C., Koning, Katherine, Vanderwerp, Molly, Cohen, Lorna, Westrate, Laura M., Koslover, Elena F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3205
container_issue 15
container_start_page 3191
container_title Biophysical journal
container_volume 122
creator Scott, Zubenelgenubi C.
Koning, Katherine
Vanderwerp, Molly
Cohen, Lorna
Westrate, Laura M.
Koslover, Elena F.
description The endoplasmic reticulum (ER) is a dynamic network of interconnected sheets and tubules that orchestrates the distribution of lipids, ions, and proteins throughout the cell. The impact of its complex, dynamic morphology on its function as an intracellular transport hub remains poorly understood. To elucidate the functional consequences of ER network structure and dynamics, we quantify how the heterogeneity of the peripheral ER in COS7 cells affects diffusive protein transport. In vivo imaging of photoactivated ER membrane proteins demonstrates their nonuniform spreading to adjacent regions, in a manner consistent with simulations of diffusing particles on extracted network structures. Using a minimal network model to represent tubule rearrangements, we demonstrate that ER network dynamics are sufficiently slow to have little effect on diffusive protein transport. Furthermore, stochastic simulations reveal a novel consequence of ER network heterogeneity: the existence of “hot spots” where sparse diffusive reactants are more likely to find one another. ER exit sites, specialized domains regulating cargo export from the ER, are shown to be disproportionately located in highly accessible regions, further from the outer boundary of the cell. Combining in vivo experiments with analytic calculations, quantitative image analysis, and computational modeling, we demonstrate how structure guides diffusive protein transport and reactions in the ER.
doi_str_mv 10.1016/j.bpj.2023.06.022
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10432226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349523004101</els_id><sourcerecordid>2833025685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-6c2cde1e0b8640994502ddc4979cf481692d96afcb4553f153d94d9b88bd5add3</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS1ERZfCH8AF5cglYfzZWBwQqsqHVKmHwtly7MnW28QOdrJV__tmtaWCC6c5zHu_Gb1HyDsKDQWqPu6abto1DBhvQDXA2AuyoVKwGqBVL8kGAFTNhZan5HUpOwDKJNBX5JSfC6Ag-YbcXEafpsGWMbgq4xzcMixjFXG-T_muusUZc9pixDA_VNsleCyVD32_lLDHas42linlubLRV3chHgDlDTnp7VDw7dM8I7--Xv68-F5fXX_7cfHlqnZCsrlWjjmPFKFrlQCthQTmvRP6XLtetFRp5rWyveuElLynknstvO7atvPSes_PyOcjd1q6Eb3DuP4zmCmH0eYHk2ww_25iuDXbtDcUBGeMqZXw4YmQ0-8Fy2zGUBwOg42YlmJYyzkwqVq5SulR6nIqJWP_fIeCObRhdmZtwxzaMKDM2sbqef_3g8-OP_Gvgk9HAa4x7QNmU1zA6NCHjG42PoX_4B8BLRydhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833025685</pqid></control><display><type>article</type><title>Endoplasmic reticulum network heterogeneity guides diffusive transport and kinetics</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Scott, Zubenelgenubi C. ; Koning, Katherine ; Vanderwerp, Molly ; Cohen, Lorna ; Westrate, Laura M. ; Koslover, Elena F.</creator><creatorcontrib>Scott, Zubenelgenubi C. ; Koning, Katherine ; Vanderwerp, Molly ; Cohen, Lorna ; Westrate, Laura M. ; Koslover, Elena F.</creatorcontrib><description>The endoplasmic reticulum (ER) is a dynamic network of interconnected sheets and tubules that orchestrates the distribution of lipids, ions, and proteins throughout the cell. The impact of its complex, dynamic morphology on its function as an intracellular transport hub remains poorly understood. To elucidate the functional consequences of ER network structure and dynamics, we quantify how the heterogeneity of the peripheral ER in COS7 cells affects diffusive protein transport. In vivo imaging of photoactivated ER membrane proteins demonstrates their nonuniform spreading to adjacent regions, in a manner consistent with simulations of diffusing particles on extracted network structures. Using a minimal network model to represent tubule rearrangements, we demonstrate that ER network dynamics are sufficiently slow to have little effect on diffusive protein transport. Furthermore, stochastic simulations reveal a novel consequence of ER network heterogeneity: the existence of “hot spots” where sparse diffusive reactants are more likely to find one another. ER exit sites, specialized domains regulating cargo export from the ER, are shown to be disproportionately located in highly accessible regions, further from the outer boundary of the cell. Combining in vivo experiments with analytic calculations, quantitative image analysis, and computational modeling, we demonstrate how structure guides diffusive protein transport and reactions in the ER.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2023.06.022</identifier><identifier>PMID: 37401053</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biological Transport ; Endoplasmic Reticulum - metabolism ; Kinetics ; Protein Transport ; Proteins - metabolism</subject><ispartof>Biophysical journal, 2023-08, Vol.122 (15), p.3191-3205</ispartof><rights>2023 Biophysical Society</rights><rights>Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 Biophysical Society. 2023 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-6c2cde1e0b8640994502ddc4979cf481692d96afcb4553f153d94d9b88bd5add3</citedby><cites>FETCH-LOGICAL-c452t-6c2cde1e0b8640994502ddc4979cf481692d96afcb4553f153d94d9b88bd5add3</cites><orcidid>0000-0003-4139-9209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432226/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349523004101$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37401053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scott, Zubenelgenubi C.</creatorcontrib><creatorcontrib>Koning, Katherine</creatorcontrib><creatorcontrib>Vanderwerp, Molly</creatorcontrib><creatorcontrib>Cohen, Lorna</creatorcontrib><creatorcontrib>Westrate, Laura M.</creatorcontrib><creatorcontrib>Koslover, Elena F.</creatorcontrib><title>Endoplasmic reticulum network heterogeneity guides diffusive transport and kinetics</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The endoplasmic reticulum (ER) is a dynamic network of interconnected sheets and tubules that orchestrates the distribution of lipids, ions, and proteins throughout the cell. The impact of its complex, dynamic morphology on its function as an intracellular transport hub remains poorly understood. To elucidate the functional consequences of ER network structure and dynamics, we quantify how the heterogeneity of the peripheral ER in COS7 cells affects diffusive protein transport. In vivo imaging of photoactivated ER membrane proteins demonstrates their nonuniform spreading to adjacent regions, in a manner consistent with simulations of diffusing particles on extracted network structures. Using a minimal network model to represent tubule rearrangements, we demonstrate that ER network dynamics are sufficiently slow to have little effect on diffusive protein transport. Furthermore, stochastic simulations reveal a novel consequence of ER network heterogeneity: the existence of “hot spots” where sparse diffusive reactants are more likely to find one another. ER exit sites, specialized domains regulating cargo export from the ER, are shown to be disproportionately located in highly accessible regions, further from the outer boundary of the cell. Combining in vivo experiments with analytic calculations, quantitative image analysis, and computational modeling, we demonstrate how structure guides diffusive protein transport and reactions in the ER.</description><subject>Biological Transport</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Kinetics</subject><subject>Protein Transport</subject><subject>Proteins - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAQxS1ERZfCH8AF5cglYfzZWBwQqsqHVKmHwtly7MnW28QOdrJV__tmtaWCC6c5zHu_Gb1HyDsKDQWqPu6abto1DBhvQDXA2AuyoVKwGqBVL8kGAFTNhZan5HUpOwDKJNBX5JSfC6Ag-YbcXEafpsGWMbgq4xzcMixjFXG-T_muusUZc9pixDA_VNsleCyVD32_lLDHas42linlubLRV3chHgDlDTnp7VDw7dM8I7--Xv68-F5fXX_7cfHlqnZCsrlWjjmPFKFrlQCthQTmvRP6XLtetFRp5rWyveuElLynknstvO7atvPSes_PyOcjd1q6Eb3DuP4zmCmH0eYHk2ww_25iuDXbtDcUBGeMqZXw4YmQ0-8Fy2zGUBwOg42YlmJYyzkwqVq5SulR6nIqJWP_fIeCObRhdmZtwxzaMKDM2sbqef_3g8-OP_Gvgk9HAa4x7QNmU1zA6NCHjG42PoX_4B8BLRydhw</recordid><startdate>20230808</startdate><enddate>20230808</enddate><creator>Scott, Zubenelgenubi C.</creator><creator>Koning, Katherine</creator><creator>Vanderwerp, Molly</creator><creator>Cohen, Lorna</creator><creator>Westrate, Laura M.</creator><creator>Koslover, Elena F.</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4139-9209</orcidid></search><sort><creationdate>20230808</creationdate><title>Endoplasmic reticulum network heterogeneity guides diffusive transport and kinetics</title><author>Scott, Zubenelgenubi C. ; Koning, Katherine ; Vanderwerp, Molly ; Cohen, Lorna ; Westrate, Laura M. ; Koslover, Elena F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-6c2cde1e0b8640994502ddc4979cf481692d96afcb4553f153d94d9b88bd5add3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological Transport</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Kinetics</topic><topic>Protein Transport</topic><topic>Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott, Zubenelgenubi C.</creatorcontrib><creatorcontrib>Koning, Katherine</creatorcontrib><creatorcontrib>Vanderwerp, Molly</creatorcontrib><creatorcontrib>Cohen, Lorna</creatorcontrib><creatorcontrib>Westrate, Laura M.</creatorcontrib><creatorcontrib>Koslover, Elena F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, Zubenelgenubi C.</au><au>Koning, Katherine</au><au>Vanderwerp, Molly</au><au>Cohen, Lorna</au><au>Westrate, Laura M.</au><au>Koslover, Elena F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endoplasmic reticulum network heterogeneity guides diffusive transport and kinetics</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2023-08-08</date><risdate>2023</risdate><volume>122</volume><issue>15</issue><spage>3191</spage><epage>3205</epage><pages>3191-3205</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>The endoplasmic reticulum (ER) is a dynamic network of interconnected sheets and tubules that orchestrates the distribution of lipids, ions, and proteins throughout the cell. The impact of its complex, dynamic morphology on its function as an intracellular transport hub remains poorly understood. To elucidate the functional consequences of ER network structure and dynamics, we quantify how the heterogeneity of the peripheral ER in COS7 cells affects diffusive protein transport. In vivo imaging of photoactivated ER membrane proteins demonstrates their nonuniform spreading to adjacent regions, in a manner consistent with simulations of diffusing particles on extracted network structures. Using a minimal network model to represent tubule rearrangements, we demonstrate that ER network dynamics are sufficiently slow to have little effect on diffusive protein transport. Furthermore, stochastic simulations reveal a novel consequence of ER network heterogeneity: the existence of “hot spots” where sparse diffusive reactants are more likely to find one another. ER exit sites, specialized domains regulating cargo export from the ER, are shown to be disproportionately located in highly accessible regions, further from the outer boundary of the cell. Combining in vivo experiments with analytic calculations, quantitative image analysis, and computational modeling, we demonstrate how structure guides diffusive protein transport and reactions in the ER.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37401053</pmid><doi>10.1016/j.bpj.2023.06.022</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4139-9209</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2023-08, Vol.122 (15), p.3191-3205
issn 0006-3495
1542-0086
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10432226
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Biological Transport
Endoplasmic Reticulum - metabolism
Kinetics
Protein Transport
Proteins - metabolism
title Endoplasmic reticulum network heterogeneity guides diffusive transport and kinetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T00%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endoplasmic%20reticulum%20network%20heterogeneity%20guides%20diffusive%20transport%20and%20kinetics&rft.jtitle=Biophysical%20journal&rft.au=Scott,%20Zubenelgenubi%20C.&rft.date=2023-08-08&rft.volume=122&rft.issue=15&rft.spage=3191&rft.epage=3205&rft.pages=3191-3205&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2023.06.022&rft_dat=%3Cproquest_pubme%3E2833025685%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833025685&rft_id=info:pmid/37401053&rft_els_id=S0006349523004101&rfr_iscdi=true