Emergent Lag Phase in Flux-Regulation Models of Bacterial Growth

Lag phase is observed in bacterial growth during a sudden change in conditions: growth is inhibited whilst cells adapt to the environment. Bi-phasic, or diauxic growth is commonly exhibited by many species. In the presence of two sugars, cells initially grow by consuming the preferred sugar then und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 2023-09, Vol.85 (9), p.84-84, Article 84
Hauptverfasser: Bate, Fiona, Amekan, Yumechris, Pushkin, Dmitri O., Chong, James P. J., Bees, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 9
container_start_page 84
container_title Bulletin of mathematical biology
container_volume 85
creator Bate, Fiona
Amekan, Yumechris
Pushkin, Dmitri O.
Chong, James P. J.
Bees, Martin
description Lag phase is observed in bacterial growth during a sudden change in conditions: growth is inhibited whilst cells adapt to the environment. Bi-phasic, or diauxic growth is commonly exhibited by many species. In the presence of two sugars, cells initially grow by consuming the preferred sugar then undergo a lag phase before resuming growth on the second. Biomass increase is characterised by a diauxic growth curve: exponential growth followed by a period of no growth before a second exponential growth. Recent literature lacks a complete dynamic description, artificially modelling lag phase and employing non-physical representations of precursor pools. Here, we formulate a rational mechanistic model based on flux-regulation/proteome partitioning with a finite precursor pool that reveals core mechanisms in a compact form. Unlike earlier systems, the characteristic dynamics emerge as part of the solution, including the lag phase. Focussing on growth of Escherichia coli on a glucose–lactose mixture we show results accurately reproduce experiments. We show that for a single strain of E. coli , diauxic growth leads to optimised biomass yields. However, intriguingly, for two competing strains diauxic growth is not always the best strategy. Our description can be generalised to model multiple different microorganisms and investigate competition between species/strains.
doi_str_mv 10.1007/s11538-023-01189-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10425510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850684183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-8595654a4ca6d39f769ab0429302796ed7f65e1638d626d78e0715ef6485206d3</originalsourceid><addsrcrecordid>eNp9kc1P3DAQxa0K1F22_Qc4oEhcuLiM7dixT3wJaKWtWiF6trzJJBuUjcFOaPnva7p0-ThwmsP83ps3eoTsMvjCAIrDyJgUmgIXFBjThqoPZMok59Qo4FtkCmA41TyHCdmJ8QaSyAjzkUxEITVIDlNyfL7C0GA_ZHPXZD-XLmLW9tlFN_6hV9iMnRta32fffYVdzHydnbpywNC6LrsM_vew_ES2a9dF_Pw0Z-TXxfn12Vc6_3H57exkTsucq4FqaaSSuctLpyph6kIZt4CcGwG8MAqrolYSmRK6UlxVhUYomMRa5TrlTJIZOVr73o6LFVZlihxcZ29Du3LhwXrX2tebvl3axt9blq5IySA5HDw5BH83Yhzsqo0ldp3r0Y_Rci0ZywUUOqH7b9AbP4Y-_fdIgdI50yJRfE2VwccYsN6kYWAfG7LrhmxqyP5ryKok2nv5x0byv5IEiDUQ06pvMDzffsf2LytYmaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850684183</pqid></control><display><type>article</type><title>Emergent Lag Phase in Flux-Regulation Models of Bacterial Growth</title><source>SpringerNature Journals</source><creator>Bate, Fiona ; Amekan, Yumechris ; Pushkin, Dmitri O. ; Chong, James P. J. ; Bees, Martin</creator><creatorcontrib>Bate, Fiona ; Amekan, Yumechris ; Pushkin, Dmitri O. ; Chong, James P. J. ; Bees, Martin</creatorcontrib><description>Lag phase is observed in bacterial growth during a sudden change in conditions: growth is inhibited whilst cells adapt to the environment. Bi-phasic, or diauxic growth is commonly exhibited by many species. In the presence of two sugars, cells initially grow by consuming the preferred sugar then undergo a lag phase before resuming growth on the second. Biomass increase is characterised by a diauxic growth curve: exponential growth followed by a period of no growth before a second exponential growth. Recent literature lacks a complete dynamic description, artificially modelling lag phase and employing non-physical representations of precursor pools. Here, we formulate a rational mechanistic model based on flux-regulation/proteome partitioning with a finite precursor pool that reveals core mechanisms in a compact form. Unlike earlier systems, the characteristic dynamics emerge as part of the solution, including the lag phase. Focussing on growth of Escherichia coli on a glucose–lactose mixture we show results accurately reproduce experiments. We show that for a single strain of E. coli , diauxic growth leads to optimised biomass yields. However, intriguingly, for two competing strains diauxic growth is not always the best strategy. Our description can be generalised to model multiple different microorganisms and investigate competition between species/strains.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-023-01189-6</identifier><identifier>PMID: 37580520</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomass ; Cell Biology ; E coli ; Lactose ; Lag phase ; Life Sciences ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Original ; Original Article ; Precursors ; Proteomes ; Strains (organisms) ; Sugar</subject><ispartof>Bulletin of mathematical biology, 2023-09, Vol.85 (9), p.84-84, Article 84</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-8595654a4ca6d39f769ab0429302796ed7f65e1638d626d78e0715ef6485206d3</cites><orcidid>0000-0002-1424-495X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-023-01189-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-023-01189-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37580520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bate, Fiona</creatorcontrib><creatorcontrib>Amekan, Yumechris</creatorcontrib><creatorcontrib>Pushkin, Dmitri O.</creatorcontrib><creatorcontrib>Chong, James P. J.</creatorcontrib><creatorcontrib>Bees, Martin</creatorcontrib><title>Emergent Lag Phase in Flux-Regulation Models of Bacterial Growth</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>Lag phase is observed in bacterial growth during a sudden change in conditions: growth is inhibited whilst cells adapt to the environment. Bi-phasic, or diauxic growth is commonly exhibited by many species. In the presence of two sugars, cells initially grow by consuming the preferred sugar then undergo a lag phase before resuming growth on the second. Biomass increase is characterised by a diauxic growth curve: exponential growth followed by a period of no growth before a second exponential growth. Recent literature lacks a complete dynamic description, artificially modelling lag phase and employing non-physical representations of precursor pools. Here, we formulate a rational mechanistic model based on flux-regulation/proteome partitioning with a finite precursor pool that reveals core mechanisms in a compact form. Unlike earlier systems, the characteristic dynamics emerge as part of the solution, including the lag phase. Focussing on growth of Escherichia coli on a glucose–lactose mixture we show results accurately reproduce experiments. We show that for a single strain of E. coli , diauxic growth leads to optimised biomass yields. However, intriguingly, for two competing strains diauxic growth is not always the best strategy. Our description can be generalised to model multiple different microorganisms and investigate competition between species/strains.</description><subject>Biomass</subject><subject>Cell Biology</subject><subject>E coli</subject><subject>Lactose</subject><subject>Lag phase</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original</subject><subject>Original Article</subject><subject>Precursors</subject><subject>Proteomes</subject><subject>Strains (organisms)</subject><subject>Sugar</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kc1P3DAQxa0K1F22_Qc4oEhcuLiM7dixT3wJaKWtWiF6trzJJBuUjcFOaPnva7p0-ThwmsP83ps3eoTsMvjCAIrDyJgUmgIXFBjThqoPZMok59Qo4FtkCmA41TyHCdmJ8QaSyAjzkUxEITVIDlNyfL7C0GA_ZHPXZD-XLmLW9tlFN_6hV9iMnRta32fffYVdzHydnbpywNC6LrsM_vew_ES2a9dF_Pw0Z-TXxfn12Vc6_3H57exkTsucq4FqaaSSuctLpyph6kIZt4CcGwG8MAqrolYSmRK6UlxVhUYomMRa5TrlTJIZOVr73o6LFVZlihxcZ29Du3LhwXrX2tebvl3axt9blq5IySA5HDw5BH83Yhzsqo0ldp3r0Y_Rci0ZywUUOqH7b9AbP4Y-_fdIgdI50yJRfE2VwccYsN6kYWAfG7LrhmxqyP5ryKok2nv5x0byv5IEiDUQ06pvMDzffsf2LytYmaA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Bate, Fiona</creator><creator>Amekan, Yumechris</creator><creator>Pushkin, Dmitri O.</creator><creator>Chong, James P. J.</creator><creator>Bees, Martin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1424-495X</orcidid></search><sort><creationdate>20230901</creationdate><title>Emergent Lag Phase in Flux-Regulation Models of Bacterial Growth</title><author>Bate, Fiona ; Amekan, Yumechris ; Pushkin, Dmitri O. ; Chong, James P. J. ; Bees, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-8595654a4ca6d39f769ab0429302796ed7f65e1638d626d78e0715ef6485206d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomass</topic><topic>Cell Biology</topic><topic>E coli</topic><topic>Lactose</topic><topic>Lag phase</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original</topic><topic>Original Article</topic><topic>Precursors</topic><topic>Proteomes</topic><topic>Strains (organisms)</topic><topic>Sugar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bate, Fiona</creatorcontrib><creatorcontrib>Amekan, Yumechris</creatorcontrib><creatorcontrib>Pushkin, Dmitri O.</creatorcontrib><creatorcontrib>Chong, James P. J.</creatorcontrib><creatorcontrib>Bees, Martin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bate, Fiona</au><au>Amekan, Yumechris</au><au>Pushkin, Dmitri O.</au><au>Chong, James P. J.</au><au>Bees, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emergent Lag Phase in Flux-Regulation Models of Bacterial Growth</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>85</volume><issue>9</issue><spage>84</spage><epage>84</epage><pages>84-84</pages><artnum>84</artnum><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>Lag phase is observed in bacterial growth during a sudden change in conditions: growth is inhibited whilst cells adapt to the environment. Bi-phasic, or diauxic growth is commonly exhibited by many species. In the presence of two sugars, cells initially grow by consuming the preferred sugar then undergo a lag phase before resuming growth on the second. Biomass increase is characterised by a diauxic growth curve: exponential growth followed by a period of no growth before a second exponential growth. Recent literature lacks a complete dynamic description, artificially modelling lag phase and employing non-physical representations of precursor pools. Here, we formulate a rational mechanistic model based on flux-regulation/proteome partitioning with a finite precursor pool that reveals core mechanisms in a compact form. Unlike earlier systems, the characteristic dynamics emerge as part of the solution, including the lag phase. Focussing on growth of Escherichia coli on a glucose–lactose mixture we show results accurately reproduce experiments. We show that for a single strain of E. coli , diauxic growth leads to optimised biomass yields. However, intriguingly, for two competing strains diauxic growth is not always the best strategy. Our description can be generalised to model multiple different microorganisms and investigate competition between species/strains.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37580520</pmid><doi>10.1007/s11538-023-01189-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1424-495X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2023-09, Vol.85 (9), p.84-84, Article 84
issn 0092-8240
1522-9602
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10425510
source SpringerNature Journals
subjects Biomass
Cell Biology
E coli
Lactose
Lag phase
Life Sciences
Mathematical and Computational Biology
Mathematics
Mathematics and Statistics
Original
Original Article
Precursors
Proteomes
Strains (organisms)
Sugar
title Emergent Lag Phase in Flux-Regulation Models of Bacterial Growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emergent%20Lag%20Phase%20in%20Flux-Regulation%20Models%20of%20Bacterial%20Growth&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Bate,%20Fiona&rft.date=2023-09-01&rft.volume=85&rft.issue=9&rft.spage=84&rft.epage=84&rft.pages=84-84&rft.artnum=84&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-023-01189-6&rft_dat=%3Cproquest_pubme%3E2850684183%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850684183&rft_id=info:pmid/37580520&rfr_iscdi=true