Epilepsy-associated SCN2A (NaV1.2) variants exhibit diverse and complex functional properties

Pathogenic variants in voltage-gated sodium (NaV) channel genes including SCN2A, encoding NaV1.2, are discovered frequently in neurodevelopmental disorders with or without epilepsy. SCN2A is also a high-confidence risk gene for autism spectrum disorder (ASD) and nonsyndromic intellectual disability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of general physiology 2023-10, Vol.155 (10), p.1
Hauptverfasser: Thompson, Christopher H, Potet, Franck, Abramova, Tatiana V, DeKeyser, Jean-Marc, Ghabra, Nora F, Vanoye, Carlos G, Millichap, John J, George, Alfred L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1
container_title The Journal of general physiology
container_volume 155
creator Thompson, Christopher H
Potet, Franck
Abramova, Tatiana V
DeKeyser, Jean-Marc
Ghabra, Nora F
Vanoye, Carlos G
Millichap, John J
George, Alfred L
description Pathogenic variants in voltage-gated sodium (NaV) channel genes including SCN2A, encoding NaV1.2, are discovered frequently in neurodevelopmental disorders with or without epilepsy. SCN2A is also a high-confidence risk gene for autism spectrum disorder (ASD) and nonsyndromic intellectual disability (ID). Previous work to determine the functional consequences of SCN2A variants yielded a paradigm in which predominantly gain-of-function variants cause neonatal-onset epilepsy, whereas loss-of-function variants are associated with ASD and ID. However, this framework was derived from a limited number of studies conducted under heterogeneous experimental conditions, whereas most disease-associated SCN2A variants have not been functionally annotated. We determined the functional properties of SCN2A variants using automated patch-clamp recording to demonstrate the validity of this method and to examine whether a binary classification of variant dysfunction is evident in a larger cohort studied under uniform conditions. We studied 28 disease-associated variants and 4 common variants using two alternatively spliced isoforms of NaV1.2 expressed in HEK293T cells. Automated patch-clamp recording provided a valid high throughput method to ascertain detailed functional properties of NaV1.2 variants with concordant findings for variants that were previously studied using manual patch clamp. Many epilepsy-associated variants in our study exhibited complex patterns of gain- and loss-of-functions that are difficult to classify by a simple binary scheme. The higher throughput achievable with automated patch clamp enables study of variants with greater standardization of recording conditions, freedom from operator bias, and enhanced experimental rigor. This approach offers an enhanced ability to discern relationships between channel dysfunction and neurodevelopmental disorders.
doi_str_mv 10.1085/jgp.202313375
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10424433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871905447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-427b7bc98a41d63fcfd240ea602f993a058c1671becd390a4b1afa2f8e97ef03</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpaTZpj70WQS_JwZvRh1f2qYQlaQshOTT0VsRYHiVavJYr2Uvy7-sl6dJ2LnOYh5d5eRj7IGApoCrPN_fDUoJUQilTvmILUWoojNHVa7YAkLIQsi6P2HHOG5inlPCWHc2oqYxWC_bzcggdDfmpwJyjCzhSy7-vb-QFP73BH2Ipz_gOU8B-zJweH0ITRt6GHaVMHPuWu7gdOnrkfurdGGKPHR9SHCiNgfI79sZjl-n9yz5hd1eXd-uvxfXtl2_ri-vCabEaCy1NYxpXV6hFu1Le-VZqIFyB9HWtEMrKiZURDblW1YC6EehR-opqQx7UCfv8HDtMzZZaR_2YsLNDCltMTzZisP9e-vBg7-POCtBSa6XmhNOXhBR_TZRHuw3ZUddhT3HKVlYlGFFJYWb003_oJk5p7r2njKih1HpPFc-USzHnRP7wjQC7F2dncfYgbuY__l3hQP8xpX4DkPSUlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871905447</pqid></control><display><type>article</type><title>Epilepsy-associated SCN2A (NaV1.2) variants exhibit diverse and complex functional properties</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Thompson, Christopher H ; Potet, Franck ; Abramova, Tatiana V ; DeKeyser, Jean-Marc ; Ghabra, Nora F ; Vanoye, Carlos G ; Millichap, John J ; George, Alfred L</creator><creatorcontrib>Thompson, Christopher H ; Potet, Franck ; Abramova, Tatiana V ; DeKeyser, Jean-Marc ; Ghabra, Nora F ; Vanoye, Carlos G ; Millichap, John J ; George, Alfred L</creatorcontrib><description>Pathogenic variants in voltage-gated sodium (NaV) channel genes including SCN2A, encoding NaV1.2, are discovered frequently in neurodevelopmental disorders with or without epilepsy. SCN2A is also a high-confidence risk gene for autism spectrum disorder (ASD) and nonsyndromic intellectual disability (ID). Previous work to determine the functional consequences of SCN2A variants yielded a paradigm in which predominantly gain-of-function variants cause neonatal-onset epilepsy, whereas loss-of-function variants are associated with ASD and ID. However, this framework was derived from a limited number of studies conducted under heterogeneous experimental conditions, whereas most disease-associated SCN2A variants have not been functionally annotated. We determined the functional properties of SCN2A variants using automated patch-clamp recording to demonstrate the validity of this method and to examine whether a binary classification of variant dysfunction is evident in a larger cohort studied under uniform conditions. We studied 28 disease-associated variants and 4 common variants using two alternatively spliced isoforms of NaV1.2 expressed in HEK293T cells. Automated patch-clamp recording provided a valid high throughput method to ascertain detailed functional properties of NaV1.2 variants with concordant findings for variants that were previously studied using manual patch clamp. Many epilepsy-associated variants in our study exhibited complex patterns of gain- and loss-of-functions that are difficult to classify by a simple binary scheme. The higher throughput achievable with automated patch clamp enables study of variants with greater standardization of recording conditions, freedom from operator bias, and enhanced experimental rigor. This approach offers an enhanced ability to discern relationships between channel dysfunction and neurodevelopmental disorders.</description><identifier>ISSN: 0022-1295</identifier><identifier>ISSN: 1540-7748</identifier><identifier>EISSN: 1540-7748</identifier><identifier>DOI: 10.1085/jgp.202313375</identifier><identifier>PMID: 37578743</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Alternative splicing ; Autism ; Autism Spectrum Disorder - genetics ; Automation ; Biophysics ; Channel gating ; Epilepsy ; Epilepsy - genetics ; HEK293 Cells ; Humans ; Intellectual disabilities ; Isoforms ; Molecular Physiology ; NAV1.2 Voltage-Gated Sodium Channel - genetics ; Neonates ; Neurodevelopmental disorders ; Neurodevelopmental Disorders - genetics ; Pathophysiology ; Phenotype ; Sodium channels (voltage-gated) ; Standardization</subject><ispartof>The Journal of general physiology, 2023-10, Vol.155 (10), p.1</ispartof><rights>2023 Thompson et al.</rights><rights>Copyright Rockefeller University Press Oct 2023</rights><rights>2023 Thompson et al. 2023 Thompson et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-427b7bc98a41d63fcfd240ea602f993a058c1671becd390a4b1afa2f8e97ef03</citedby><cites>FETCH-LOGICAL-c416t-427b7bc98a41d63fcfd240ea602f993a058c1671becd390a4b1afa2f8e97ef03</cites><orcidid>0009-0004-7485-1358 ; 0000-0002-4935-1122 ; 0000-0002-3993-966X ; 0000-0003-3713-630X ; 0000-0001-9863-6274 ; 0009-0002-6606-2055 ; 0000-0003-4233-5653 ; 0000-0002-0798-0131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37578743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, Christopher H</creatorcontrib><creatorcontrib>Potet, Franck</creatorcontrib><creatorcontrib>Abramova, Tatiana V</creatorcontrib><creatorcontrib>DeKeyser, Jean-Marc</creatorcontrib><creatorcontrib>Ghabra, Nora F</creatorcontrib><creatorcontrib>Vanoye, Carlos G</creatorcontrib><creatorcontrib>Millichap, John J</creatorcontrib><creatorcontrib>George, Alfred L</creatorcontrib><title>Epilepsy-associated SCN2A (NaV1.2) variants exhibit diverse and complex functional properties</title><title>The Journal of general physiology</title><addtitle>J Gen Physiol</addtitle><description>Pathogenic variants in voltage-gated sodium (NaV) channel genes including SCN2A, encoding NaV1.2, are discovered frequently in neurodevelopmental disorders with or without epilepsy. SCN2A is also a high-confidence risk gene for autism spectrum disorder (ASD) and nonsyndromic intellectual disability (ID). Previous work to determine the functional consequences of SCN2A variants yielded a paradigm in which predominantly gain-of-function variants cause neonatal-onset epilepsy, whereas loss-of-function variants are associated with ASD and ID. However, this framework was derived from a limited number of studies conducted under heterogeneous experimental conditions, whereas most disease-associated SCN2A variants have not been functionally annotated. We determined the functional properties of SCN2A variants using automated patch-clamp recording to demonstrate the validity of this method and to examine whether a binary classification of variant dysfunction is evident in a larger cohort studied under uniform conditions. We studied 28 disease-associated variants and 4 common variants using two alternatively spliced isoforms of NaV1.2 expressed in HEK293T cells. Automated patch-clamp recording provided a valid high throughput method to ascertain detailed functional properties of NaV1.2 variants with concordant findings for variants that were previously studied using manual patch clamp. Many epilepsy-associated variants in our study exhibited complex patterns of gain- and loss-of-functions that are difficult to classify by a simple binary scheme. The higher throughput achievable with automated patch clamp enables study of variants with greater standardization of recording conditions, freedom from operator bias, and enhanced experimental rigor. This approach offers an enhanced ability to discern relationships between channel dysfunction and neurodevelopmental disorders.</description><subject>Alternative splicing</subject><subject>Autism</subject><subject>Autism Spectrum Disorder - genetics</subject><subject>Automation</subject><subject>Biophysics</subject><subject>Channel gating</subject><subject>Epilepsy</subject><subject>Epilepsy - genetics</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Intellectual disabilities</subject><subject>Isoforms</subject><subject>Molecular Physiology</subject><subject>NAV1.2 Voltage-Gated Sodium Channel - genetics</subject><subject>Neonates</subject><subject>Neurodevelopmental disorders</subject><subject>Neurodevelopmental Disorders - genetics</subject><subject>Pathophysiology</subject><subject>Phenotype</subject><subject>Sodium channels (voltage-gated)</subject><subject>Standardization</subject><issn>0022-1295</issn><issn>1540-7748</issn><issn>1540-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1r3DAQhkVpaTZpj70WQS_JwZvRh1f2qYQlaQshOTT0VsRYHiVavJYr2Uvy7-sl6dJ2LnOYh5d5eRj7IGApoCrPN_fDUoJUQilTvmILUWoojNHVa7YAkLIQsi6P2HHOG5inlPCWHc2oqYxWC_bzcggdDfmpwJyjCzhSy7-vb-QFP73BH2Ipz_gOU8B-zJweH0ITRt6GHaVMHPuWu7gdOnrkfurdGGKPHR9SHCiNgfI79sZjl-n9yz5hd1eXd-uvxfXtl2_ri-vCabEaCy1NYxpXV6hFu1Le-VZqIFyB9HWtEMrKiZURDblW1YC6EehR-opqQx7UCfv8HDtMzZZaR_2YsLNDCltMTzZisP9e-vBg7-POCtBSa6XmhNOXhBR_TZRHuw3ZUddhT3HKVlYlGFFJYWb003_oJk5p7r2njKih1HpPFc-USzHnRP7wjQC7F2dncfYgbuY__l3hQP8xpX4DkPSUlA</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Thompson, Christopher H</creator><creator>Potet, Franck</creator><creator>Abramova, Tatiana V</creator><creator>DeKeyser, Jean-Marc</creator><creator>Ghabra, Nora F</creator><creator>Vanoye, Carlos G</creator><creator>Millichap, John J</creator><creator>George, Alfred L</creator><general>Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0004-7485-1358</orcidid><orcidid>https://orcid.org/0000-0002-4935-1122</orcidid><orcidid>https://orcid.org/0000-0002-3993-966X</orcidid><orcidid>https://orcid.org/0000-0003-3713-630X</orcidid><orcidid>https://orcid.org/0000-0001-9863-6274</orcidid><orcidid>https://orcid.org/0009-0002-6606-2055</orcidid><orcidid>https://orcid.org/0000-0003-4233-5653</orcidid><orcidid>https://orcid.org/0000-0002-0798-0131</orcidid></search><sort><creationdate>20231002</creationdate><title>Epilepsy-associated SCN2A (NaV1.2) variants exhibit diverse and complex functional properties</title><author>Thompson, Christopher H ; Potet, Franck ; Abramova, Tatiana V ; DeKeyser, Jean-Marc ; Ghabra, Nora F ; Vanoye, Carlos G ; Millichap, John J ; George, Alfred L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-427b7bc98a41d63fcfd240ea602f993a058c1671becd390a4b1afa2f8e97ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative splicing</topic><topic>Autism</topic><topic>Autism Spectrum Disorder - genetics</topic><topic>Automation</topic><topic>Biophysics</topic><topic>Channel gating</topic><topic>Epilepsy</topic><topic>Epilepsy - genetics</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Intellectual disabilities</topic><topic>Isoforms</topic><topic>Molecular Physiology</topic><topic>NAV1.2 Voltage-Gated Sodium Channel - genetics</topic><topic>Neonates</topic><topic>Neurodevelopmental disorders</topic><topic>Neurodevelopmental Disorders - genetics</topic><topic>Pathophysiology</topic><topic>Phenotype</topic><topic>Sodium channels (voltage-gated)</topic><topic>Standardization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Christopher H</creatorcontrib><creatorcontrib>Potet, Franck</creatorcontrib><creatorcontrib>Abramova, Tatiana V</creatorcontrib><creatorcontrib>DeKeyser, Jean-Marc</creatorcontrib><creatorcontrib>Ghabra, Nora F</creatorcontrib><creatorcontrib>Vanoye, Carlos G</creatorcontrib><creatorcontrib>Millichap, John J</creatorcontrib><creatorcontrib>George, Alfred L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of general physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Christopher H</au><au>Potet, Franck</au><au>Abramova, Tatiana V</au><au>DeKeyser, Jean-Marc</au><au>Ghabra, Nora F</au><au>Vanoye, Carlos G</au><au>Millichap, John J</au><au>George, Alfred L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epilepsy-associated SCN2A (NaV1.2) variants exhibit diverse and complex functional properties</atitle><jtitle>The Journal of general physiology</jtitle><addtitle>J Gen Physiol</addtitle><date>2023-10-02</date><risdate>2023</risdate><volume>155</volume><issue>10</issue><spage>1</spage><pages>1-</pages><issn>0022-1295</issn><issn>1540-7748</issn><eissn>1540-7748</eissn><abstract>Pathogenic variants in voltage-gated sodium (NaV) channel genes including SCN2A, encoding NaV1.2, are discovered frequently in neurodevelopmental disorders with or without epilepsy. SCN2A is also a high-confidence risk gene for autism spectrum disorder (ASD) and nonsyndromic intellectual disability (ID). Previous work to determine the functional consequences of SCN2A variants yielded a paradigm in which predominantly gain-of-function variants cause neonatal-onset epilepsy, whereas loss-of-function variants are associated with ASD and ID. However, this framework was derived from a limited number of studies conducted under heterogeneous experimental conditions, whereas most disease-associated SCN2A variants have not been functionally annotated. We determined the functional properties of SCN2A variants using automated patch-clamp recording to demonstrate the validity of this method and to examine whether a binary classification of variant dysfunction is evident in a larger cohort studied under uniform conditions. We studied 28 disease-associated variants and 4 common variants using two alternatively spliced isoforms of NaV1.2 expressed in HEK293T cells. Automated patch-clamp recording provided a valid high throughput method to ascertain detailed functional properties of NaV1.2 variants with concordant findings for variants that were previously studied using manual patch clamp. Many epilepsy-associated variants in our study exhibited complex patterns of gain- and loss-of-functions that are difficult to classify by a simple binary scheme. The higher throughput achievable with automated patch clamp enables study of variants with greater standardization of recording conditions, freedom from operator bias, and enhanced experimental rigor. This approach offers an enhanced ability to discern relationships between channel dysfunction and neurodevelopmental disorders.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>37578743</pmid><doi>10.1085/jgp.202313375</doi><orcidid>https://orcid.org/0009-0004-7485-1358</orcidid><orcidid>https://orcid.org/0000-0002-4935-1122</orcidid><orcidid>https://orcid.org/0000-0002-3993-966X</orcidid><orcidid>https://orcid.org/0000-0003-3713-630X</orcidid><orcidid>https://orcid.org/0000-0001-9863-6274</orcidid><orcidid>https://orcid.org/0009-0002-6606-2055</orcidid><orcidid>https://orcid.org/0000-0003-4233-5653</orcidid><orcidid>https://orcid.org/0000-0002-0798-0131</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1295
ispartof The Journal of general physiology, 2023-10, Vol.155 (10), p.1
issn 0022-1295
1540-7748
1540-7748
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10424433
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Alternative splicing
Autism
Autism Spectrum Disorder - genetics
Automation
Biophysics
Channel gating
Epilepsy
Epilepsy - genetics
HEK293 Cells
Humans
Intellectual disabilities
Isoforms
Molecular Physiology
NAV1.2 Voltage-Gated Sodium Channel - genetics
Neonates
Neurodevelopmental disorders
Neurodevelopmental Disorders - genetics
Pathophysiology
Phenotype
Sodium channels (voltage-gated)
Standardization
title Epilepsy-associated SCN2A (NaV1.2) variants exhibit diverse and complex functional properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epilepsy-associated%20SCN2A%20(NaV1.2)%20variants%20exhibit%20diverse%20and%20complex%20functional%20properties&rft.jtitle=The%20Journal%20of%20general%20physiology&rft.au=Thompson,%20Christopher%20H&rft.date=2023-10-02&rft.volume=155&rft.issue=10&rft.spage=1&rft.pages=1-&rft.issn=0022-1295&rft.eissn=1540-7748&rft_id=info:doi/10.1085/jgp.202313375&rft_dat=%3Cproquest_pubme%3E2871905447%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2871905447&rft_id=info:pmid/37578743&rfr_iscdi=true