Revealing the Impact of Genomic Alterations on Cancer Cell Signaling with an Interpretable Deep Learning Model
Cancer is a disease of aberrant cellular signaling resulting from somatic genomic alterations (SGAs). Heterogeneous SGA events in tumors lead to tumor-specific signaling system aberrations. We interpret the cancer signaling system as a causal graphical model, where SGAs affect signaling proteins, pr...
Gespeichert in:
Veröffentlicht in: | Cancers 2023-07, Vol.15 (15), p.3857 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | 3857 |
container_title | Cancers |
container_volume | 15 |
creator | Young, Jonathan D Ren, Shuangxia Chen, Lujia Lu, Xinghua |
description | Cancer is a disease of aberrant cellular signaling resulting from somatic genomic alterations (SGAs). Heterogeneous SGA events in tumors lead to tumor-specific signaling system aberrations. We interpret the cancer signaling system as a causal graphical model, where SGAs affect signaling proteins, propagate their effects through signal transduction, and ultimately change gene expression. To represent such a system, we developed a deep learning model called redundant-input neural network (RINN) with a transparent redundant-input architecture. Our findings demonstrate that by utilizing SGAs as inputs, the RINN can encode their impact on the signaling system and predict gene expression accurately when measured as the area under ROC curves. Moreover, the RINN can discover the shared functional impact (similar embeddings) of SGAs that perturb a common signaling pathway (e.g., PI3K, Nrf2, and TGF). Furthermore, the RINN exhibits the ability to discover known relationships in cellular signaling systems. |
doi_str_mv | 10.3390/cancers15153857 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10416927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760514181</galeid><sourcerecordid>A760514181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-2f30f0d5c726f32bbbbffd54e5dd02622ba35ad40271955b8309a54310c295b23</originalsourceid><addsrcrecordid>eNptkk1v1DAQhi0EolXpmRuyxIXLtv6I4-SEVguUlRYhQXu2HGe86yqxg-0t4t_jsP0W44Mt-3nf0XgGobeUnHHeknOjvYGYqKCCN0K-QMeMSLao67Z6-eh8hE5TuiYlOKeylq_REZeibmrJj5H_ATegB-e3OO8Ar8dJm4yDxRfgw-gMXg4Zos4u-ISDx6t_OfEKhgH_dFt_kP52eYe1x2tf4ClC1t0A-BPAhDego5-Zb6GH4Q16ZfWQ4PR2P0FXXz5frr4uNt8v1qvlZmGqiucFs5xY0gsjWW0560pY24sKRN8TVjPWaS50XxEmaStE13DSalFxSgxrRcf4Cfp48J323Qi9AZ-jHtQU3ajjHxW0U09fvNupbbhRlFS0bpksDh9uHWL4tYeU1eiSKWVrD2GfFGsE4bThLS3o-2foddjH8jUzVTXt3B_yQG31AMp5G0piM5uqpayJoBVtZq-z_1Bl9VC6ETxYV-6fCM4PAhNDShHsfZGUqHlM1LMxKYp3j__mnr8bCv4XU7S4YQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848951530</pqid></control><display><type>article</type><title>Revealing the Impact of Genomic Alterations on Cancer Cell Signaling with an Interpretable Deep Learning Model</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Young, Jonathan D ; Ren, Shuangxia ; Chen, Lujia ; Lu, Xinghua</creator><creatorcontrib>Young, Jonathan D ; Ren, Shuangxia ; Chen, Lujia ; Lu, Xinghua</creatorcontrib><description>Cancer is a disease of aberrant cellular signaling resulting from somatic genomic alterations (SGAs). Heterogeneous SGA events in tumors lead to tumor-specific signaling system aberrations. We interpret the cancer signaling system as a causal graphical model, where SGAs affect signaling proteins, propagate their effects through signal transduction, and ultimately change gene expression. To represent such a system, we developed a deep learning model called redundant-input neural network (RINN) with a transparent redundant-input architecture. Our findings demonstrate that by utilizing SGAs as inputs, the RINN can encode their impact on the signaling system and predict gene expression accurately when measured as the area under ROC curves. Moreover, the RINN can discover the shared functional impact (similar embeddings) of SGAs that perturb a common signaling pathway (e.g., PI3K, Nrf2, and TGF). Furthermore, the RINN exhibits the ability to discover known relationships in cellular signaling systems.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers15153857</identifier><identifier>PMID: 37568673</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>1-Phosphatidylinositol 3-kinase ; Analysis ; Cancer ; Cell signaling ; Cellular signal transduction ; Copper ; Deep learning ; Gene expression ; Genes ; Genetic algorithms ; Genetic aspects ; Genomes ; Genomics ; Learning strategies ; Neural networks ; Precision medicine ; Proteins ; Signal transduction ; Transcription factors ; Transforming growth factors ; Tumors ; Variables</subject><ispartof>Cancers, 2023-07, Vol.15 (15), p.3857</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c443t-2f30f0d5c726f32bbbbffd54e5dd02622ba35ad40271955b8309a54310c295b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416927/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416927/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37568673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Jonathan D</creatorcontrib><creatorcontrib>Ren, Shuangxia</creatorcontrib><creatorcontrib>Chen, Lujia</creatorcontrib><creatorcontrib>Lu, Xinghua</creatorcontrib><title>Revealing the Impact of Genomic Alterations on Cancer Cell Signaling with an Interpretable Deep Learning Model</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>Cancer is a disease of aberrant cellular signaling resulting from somatic genomic alterations (SGAs). Heterogeneous SGA events in tumors lead to tumor-specific signaling system aberrations. We interpret the cancer signaling system as a causal graphical model, where SGAs affect signaling proteins, propagate their effects through signal transduction, and ultimately change gene expression. To represent such a system, we developed a deep learning model called redundant-input neural network (RINN) with a transparent redundant-input architecture. Our findings demonstrate that by utilizing SGAs as inputs, the RINN can encode their impact on the signaling system and predict gene expression accurately when measured as the area under ROC curves. Moreover, the RINN can discover the shared functional impact (similar embeddings) of SGAs that perturb a common signaling pathway (e.g., PI3K, Nrf2, and TGF). Furthermore, the RINN exhibits the ability to discover known relationships in cellular signaling systems.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>Analysis</subject><subject>Cancer</subject><subject>Cell signaling</subject><subject>Cellular signal transduction</subject><subject>Copper</subject><subject>Deep learning</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic algorithms</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Learning strategies</subject><subject>Neural networks</subject><subject>Precision medicine</subject><subject>Proteins</subject><subject>Signal transduction</subject><subject>Transcription factors</subject><subject>Transforming growth factors</subject><subject>Tumors</subject><subject>Variables</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkk1v1DAQhi0EolXpmRuyxIXLtv6I4-SEVguUlRYhQXu2HGe86yqxg-0t4t_jsP0W44Mt-3nf0XgGobeUnHHeknOjvYGYqKCCN0K-QMeMSLao67Z6-eh8hE5TuiYlOKeylq_REZeibmrJj5H_ATegB-e3OO8Ar8dJm4yDxRfgw-gMXg4Zos4u-ISDx6t_OfEKhgH_dFt_kP52eYe1x2tf4ClC1t0A-BPAhDego5-Zb6GH4Q16ZfWQ4PR2P0FXXz5frr4uNt8v1qvlZmGqiucFs5xY0gsjWW0560pY24sKRN8TVjPWaS50XxEmaStE13DSalFxSgxrRcf4Cfp48J323Qi9AZ-jHtQU3ajjHxW0U09fvNupbbhRlFS0bpksDh9uHWL4tYeU1eiSKWVrD2GfFGsE4bThLS3o-2foddjH8jUzVTXt3B_yQG31AMp5G0piM5uqpayJoBVtZq-z_1Bl9VC6ETxYV-6fCM4PAhNDShHsfZGUqHlM1LMxKYp3j__mnr8bCv4XU7S4YQ</recordid><startdate>20230729</startdate><enddate>20230729</enddate><creator>Young, Jonathan D</creator><creator>Ren, Shuangxia</creator><creator>Chen, Lujia</creator><creator>Lu, Xinghua</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230729</creationdate><title>Revealing the Impact of Genomic Alterations on Cancer Cell Signaling with an Interpretable Deep Learning Model</title><author>Young, Jonathan D ; Ren, Shuangxia ; Chen, Lujia ; Lu, Xinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-2f30f0d5c726f32bbbbffd54e5dd02622ba35ad40271955b8309a54310c295b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>Analysis</topic><topic>Cancer</topic><topic>Cell signaling</topic><topic>Cellular signal transduction</topic><topic>Copper</topic><topic>Deep learning</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic algorithms</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Learning strategies</topic><topic>Neural networks</topic><topic>Precision medicine</topic><topic>Proteins</topic><topic>Signal transduction</topic><topic>Transcription factors</topic><topic>Transforming growth factors</topic><topic>Tumors</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Jonathan D</creatorcontrib><creatorcontrib>Ren, Shuangxia</creatorcontrib><creatorcontrib>Chen, Lujia</creatorcontrib><creatorcontrib>Lu, Xinghua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Jonathan D</au><au>Ren, Shuangxia</au><au>Chen, Lujia</au><au>Lu, Xinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the Impact of Genomic Alterations on Cancer Cell Signaling with an Interpretable Deep Learning Model</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2023-07-29</date><risdate>2023</risdate><volume>15</volume><issue>15</issue><spage>3857</spage><pages>3857-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Cancer is a disease of aberrant cellular signaling resulting from somatic genomic alterations (SGAs). Heterogeneous SGA events in tumors lead to tumor-specific signaling system aberrations. We interpret the cancer signaling system as a causal graphical model, where SGAs affect signaling proteins, propagate their effects through signal transduction, and ultimately change gene expression. To represent such a system, we developed a deep learning model called redundant-input neural network (RINN) with a transparent redundant-input architecture. Our findings demonstrate that by utilizing SGAs as inputs, the RINN can encode their impact on the signaling system and predict gene expression accurately when measured as the area under ROC curves. Moreover, the RINN can discover the shared functional impact (similar embeddings) of SGAs that perturb a common signaling pathway (e.g., PI3K, Nrf2, and TGF). Furthermore, the RINN exhibits the ability to discover known relationships in cellular signaling systems.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37568673</pmid><doi>10.3390/cancers15153857</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2023-07, Vol.15 (15), p.3857 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10416927 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | 1-Phosphatidylinositol 3-kinase Analysis Cancer Cell signaling Cellular signal transduction Copper Deep learning Gene expression Genes Genetic algorithms Genetic aspects Genomes Genomics Learning strategies Neural networks Precision medicine Proteins Signal transduction Transcription factors Transforming growth factors Tumors Variables |
title | Revealing the Impact of Genomic Alterations on Cancer Cell Signaling with an Interpretable Deep Learning Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A15%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20Impact%20of%20Genomic%20Alterations%20on%20Cancer%20Cell%20Signaling%20with%20an%20Interpretable%20Deep%20Learning%20Model&rft.jtitle=Cancers&rft.au=Young,%20Jonathan%20D&rft.date=2023-07-29&rft.volume=15&rft.issue=15&rft.spage=3857&rft.pages=3857-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers15153857&rft_dat=%3Cgale_pubme%3EA760514181%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848951530&rft_id=info:pmid/37568673&rft_galeid=A760514181&rfr_iscdi=true |