Quantum Tunneling Facilitates Water Motion across the Surface of Phenanthrene
Quantum tunneling is a fundamental phenomenon that plays a pivotal role in the motion and interaction of atoms and molecules. In particular, its influence in the interaction between water molecules and carbon surfaces can have significant implications for a multitude of fields ranging from atmospher...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2023-08, Vol.145 (31), p.17201-17210 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17210 |
---|---|
container_issue | 31 |
container_start_page | 17201 |
container_title | Journal of the American Chemical Society |
container_volume | 145 |
creator | Loru, Donatella Steber, Amanda L. Pérez, Cristóbal Obenchain, Daniel A. Temelso, Berhane López, Juan C. Schnell, Melanie |
description | Quantum tunneling is a fundamental phenomenon that plays a pivotal role in the motion and interaction of atoms and molecules. In particular, its influence in the interaction between water molecules and carbon surfaces can have significant implications for a multitude of fields ranging from atmospheric chemistry to separation technologies. Here, we unveil at the molecular level the complex motion dynamics of a single water molecule on the planar surface of the polycyclic aromatic hydrocarbon phenanthrene, which was used as a small-scale carbon surface-like model. In this system, the water molecule interacts with the substrate through weak O–H···π hydrogen bonds, in which phenanthrene acts as the hydrogen-bond acceptor via the high electron density of its aromatic cloud. The rotational spectrum, which was recorded using chirped-pulse Fourier transform microwave spectroscopy, exhibits characteristic line splittings as dynamical features. The nature of the internal dynamics was elucidated in great detail with the investigation of the isotope-substitution effect on the line splittings in the rotational spectra of the H2 18O, D2O, and HDO isotopologues of the phenanthrene–H2O complex. The spectral analysis revealed a complex internal dynamic showing a concerted tunneling motion of water involving its internal rotation and its translation between the two equivalent peripheral rings of phenanthrene. This high-resolution spectroscopy study presents the observation of a tunneling motion exhibited by the water monomer when interacting with a planar carbon surface with an unprecedented level of detail. This can serve as a small-scale analogue for water motions on large aromatic surfaces, i.e., large polycyclic aromatic hydrocarbons and graphene. |
doi_str_mv | 10.1021/jacs.3c04281 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10416304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040458194</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-f7d590a8cf8b45b2bc851ed44bd5a8caf6978f28cfc0dbc1efa4462e39d164483</originalsourceid><addsrcrecordid>eNqFkc1LHDEYh4NU6nbbm-eSYw-O5nMmcypFtC0oKl3xGDKZN7uzzCaazAj975vR7Vah4CUheZ88Sd4fQoeUHFPC6Mna2HTMLRFM0T00o5KRQlJWvkMzQggrKlXyA_QhpXVeTtB7dMArUQvK6xm6vBmNH8YNXozeQ9_5JT43tuu7wQyQ8F0eI74MQxc8NjaGlPCwAvxrjM5YwMHh6xX4rFhF8PAR7TvTJ_i0nefo9vxscfqjuLj6_vP020VhhKRD4apW1sQo61QjZMMaqySFVoimlXnXuLKulGO5bknbWArOCFEy4HVLSyEUn6Ovz977sdlAa8EP0fT6PnYbE3_rYDr9uuK7lV6GR02JoCUnIhu-bA0xPIyQBr3pkoW-Nx7CmHRmiJCK1m-jTAlOuBJEZvToGX3qVAS3exIlekpLT2npbVoZ__zyGzv4bzz_rp5OrcMYfe7q_11_APYnnzs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843038405</pqid></control><display><type>article</type><title>Quantum Tunneling Facilitates Water Motion across the Surface of Phenanthrene</title><source>ACS Publications</source><creator>Loru, Donatella ; Steber, Amanda L. ; Pérez, Cristóbal ; Obenchain, Daniel A. ; Temelso, Berhane ; López, Juan C. ; Schnell, Melanie</creator><creatorcontrib>Loru, Donatella ; Steber, Amanda L. ; Pérez, Cristóbal ; Obenchain, Daniel A. ; Temelso, Berhane ; López, Juan C. ; Schnell, Melanie</creatorcontrib><description>Quantum tunneling is a fundamental phenomenon that plays a pivotal role in the motion and interaction of atoms and molecules. In particular, its influence in the interaction between water molecules and carbon surfaces can have significant implications for a multitude of fields ranging from atmospheric chemistry to separation technologies. Here, we unveil at the molecular level the complex motion dynamics of a single water molecule on the planar surface of the polycyclic aromatic hydrocarbon phenanthrene, which was used as a small-scale carbon surface-like model. In this system, the water molecule interacts with the substrate through weak O–H···π hydrogen bonds, in which phenanthrene acts as the hydrogen-bond acceptor via the high electron density of its aromatic cloud. The rotational spectrum, which was recorded using chirped-pulse Fourier transform microwave spectroscopy, exhibits characteristic line splittings as dynamical features. The nature of the internal dynamics was elucidated in great detail with the investigation of the isotope-substitution effect on the line splittings in the rotational spectra of the H2 18O, D2O, and HDO isotopologues of the phenanthrene–H2O complex. The spectral analysis revealed a complex internal dynamic showing a concerted tunneling motion of water involving its internal rotation and its translation between the two equivalent peripheral rings of phenanthrene. This high-resolution spectroscopy study presents the observation of a tunneling motion exhibited by the water monomer when interacting with a planar carbon surface with an unprecedented level of detail. This can serve as a small-scale analogue for water motions on large aromatic surfaces, i.e., large polycyclic aromatic hydrocarbons and graphene.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c04281</identifier><identifier>PMID: 37494139</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>atmospheric chemistry ; graphene ; hydrogen ; hydrogen bonding ; phenanthrenes ; spectral analysis ; spectroscopy</subject><ispartof>Journal of the American Chemical Society, 2023-08, Vol.145 (31), p.17201-17210</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-f7d590a8cf8b45b2bc851ed44bd5a8caf6978f28cfc0dbc1efa4462e39d164483</citedby><cites>FETCH-LOGICAL-a451t-f7d590a8cf8b45b2bc851ed44bd5a8caf6978f28cfc0dbc1efa4462e39d164483</cites><orcidid>0000-0001-5533-1163 ; 0000-0002-5286-1983 ; 0000-0003-1028-779X ; 0000-0001-7801-7134 ; 0000-0002-8203-2174 ; 0000-0001-5248-5212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c04281$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c04281$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37494139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loru, Donatella</creatorcontrib><creatorcontrib>Steber, Amanda L.</creatorcontrib><creatorcontrib>Pérez, Cristóbal</creatorcontrib><creatorcontrib>Obenchain, Daniel A.</creatorcontrib><creatorcontrib>Temelso, Berhane</creatorcontrib><creatorcontrib>López, Juan C.</creatorcontrib><creatorcontrib>Schnell, Melanie</creatorcontrib><title>Quantum Tunneling Facilitates Water Motion across the Surface of Phenanthrene</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Quantum tunneling is a fundamental phenomenon that plays a pivotal role in the motion and interaction of atoms and molecules. In particular, its influence in the interaction between water molecules and carbon surfaces can have significant implications for a multitude of fields ranging from atmospheric chemistry to separation technologies. Here, we unveil at the molecular level the complex motion dynamics of a single water molecule on the planar surface of the polycyclic aromatic hydrocarbon phenanthrene, which was used as a small-scale carbon surface-like model. In this system, the water molecule interacts with the substrate through weak O–H···π hydrogen bonds, in which phenanthrene acts as the hydrogen-bond acceptor via the high electron density of its aromatic cloud. The rotational spectrum, which was recorded using chirped-pulse Fourier transform microwave spectroscopy, exhibits characteristic line splittings as dynamical features. The nature of the internal dynamics was elucidated in great detail with the investigation of the isotope-substitution effect on the line splittings in the rotational spectra of the H2 18O, D2O, and HDO isotopologues of the phenanthrene–H2O complex. The spectral analysis revealed a complex internal dynamic showing a concerted tunneling motion of water involving its internal rotation and its translation between the two equivalent peripheral rings of phenanthrene. This high-resolution spectroscopy study presents the observation of a tunneling motion exhibited by the water monomer when interacting with a planar carbon surface with an unprecedented level of detail. This can serve as a small-scale analogue for water motions on large aromatic surfaces, i.e., large polycyclic aromatic hydrocarbons and graphene.</description><subject>atmospheric chemistry</subject><subject>graphene</subject><subject>hydrogen</subject><subject>hydrogen bonding</subject><subject>phenanthrenes</subject><subject>spectral analysis</subject><subject>spectroscopy</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LHDEYh4NU6nbbm-eSYw-O5nMmcypFtC0oKl3xGDKZN7uzzCaazAj975vR7Vah4CUheZ88Sd4fQoeUHFPC6Mna2HTMLRFM0T00o5KRQlJWvkMzQggrKlXyA_QhpXVeTtB7dMArUQvK6xm6vBmNH8YNXozeQ9_5JT43tuu7wQyQ8F0eI74MQxc8NjaGlPCwAvxrjM5YwMHh6xX4rFhF8PAR7TvTJ_i0nefo9vxscfqjuLj6_vP020VhhKRD4apW1sQo61QjZMMaqySFVoimlXnXuLKulGO5bknbWArOCFEy4HVLSyEUn6Ovz977sdlAa8EP0fT6PnYbE3_rYDr9uuK7lV6GR02JoCUnIhu-bA0xPIyQBr3pkoW-Nx7CmHRmiJCK1m-jTAlOuBJEZvToGX3qVAS3exIlekpLT2npbVoZ__zyGzv4bzz_rp5OrcMYfe7q_11_APYnnzs</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>Loru, Donatella</creator><creator>Steber, Amanda L.</creator><creator>Pérez, Cristóbal</creator><creator>Obenchain, Daniel A.</creator><creator>Temelso, Berhane</creator><creator>López, Juan C.</creator><creator>Schnell, Melanie</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5533-1163</orcidid><orcidid>https://orcid.org/0000-0002-5286-1983</orcidid><orcidid>https://orcid.org/0000-0003-1028-779X</orcidid><orcidid>https://orcid.org/0000-0001-7801-7134</orcidid><orcidid>https://orcid.org/0000-0002-8203-2174</orcidid><orcidid>https://orcid.org/0000-0001-5248-5212</orcidid></search><sort><creationdate>20230809</creationdate><title>Quantum Tunneling Facilitates Water Motion across the Surface of Phenanthrene</title><author>Loru, Donatella ; Steber, Amanda L. ; Pérez, Cristóbal ; Obenchain, Daniel A. ; Temelso, Berhane ; López, Juan C. ; Schnell, Melanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-f7d590a8cf8b45b2bc851ed44bd5a8caf6978f28cfc0dbc1efa4462e39d164483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>atmospheric chemistry</topic><topic>graphene</topic><topic>hydrogen</topic><topic>hydrogen bonding</topic><topic>phenanthrenes</topic><topic>spectral analysis</topic><topic>spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loru, Donatella</creatorcontrib><creatorcontrib>Steber, Amanda L.</creatorcontrib><creatorcontrib>Pérez, Cristóbal</creatorcontrib><creatorcontrib>Obenchain, Daniel A.</creatorcontrib><creatorcontrib>Temelso, Berhane</creatorcontrib><creatorcontrib>López, Juan C.</creatorcontrib><creatorcontrib>Schnell, Melanie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loru, Donatella</au><au>Steber, Amanda L.</au><au>Pérez, Cristóbal</au><au>Obenchain, Daniel A.</au><au>Temelso, Berhane</au><au>López, Juan C.</au><au>Schnell, Melanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Tunneling Facilitates Water Motion across the Surface of Phenanthrene</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-08-09</date><risdate>2023</risdate><volume>145</volume><issue>31</issue><spage>17201</spage><epage>17210</epage><pages>17201-17210</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Quantum tunneling is a fundamental phenomenon that plays a pivotal role in the motion and interaction of atoms and molecules. In particular, its influence in the interaction between water molecules and carbon surfaces can have significant implications for a multitude of fields ranging from atmospheric chemistry to separation technologies. Here, we unveil at the molecular level the complex motion dynamics of a single water molecule on the planar surface of the polycyclic aromatic hydrocarbon phenanthrene, which was used as a small-scale carbon surface-like model. In this system, the water molecule interacts with the substrate through weak O–H···π hydrogen bonds, in which phenanthrene acts as the hydrogen-bond acceptor via the high electron density of its aromatic cloud. The rotational spectrum, which was recorded using chirped-pulse Fourier transform microwave spectroscopy, exhibits characteristic line splittings as dynamical features. The nature of the internal dynamics was elucidated in great detail with the investigation of the isotope-substitution effect on the line splittings in the rotational spectra of the H2 18O, D2O, and HDO isotopologues of the phenanthrene–H2O complex. The spectral analysis revealed a complex internal dynamic showing a concerted tunneling motion of water involving its internal rotation and its translation between the two equivalent peripheral rings of phenanthrene. This high-resolution spectroscopy study presents the observation of a tunneling motion exhibited by the water monomer when interacting with a planar carbon surface with an unprecedented level of detail. This can serve as a small-scale analogue for water motions on large aromatic surfaces, i.e., large polycyclic aromatic hydrocarbons and graphene.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37494139</pmid><doi>10.1021/jacs.3c04281</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5533-1163</orcidid><orcidid>https://orcid.org/0000-0002-5286-1983</orcidid><orcidid>https://orcid.org/0000-0003-1028-779X</orcidid><orcidid>https://orcid.org/0000-0001-7801-7134</orcidid><orcidid>https://orcid.org/0000-0002-8203-2174</orcidid><orcidid>https://orcid.org/0000-0001-5248-5212</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2023-08, Vol.145 (31), p.17201-17210 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10416304 |
source | ACS Publications |
subjects | atmospheric chemistry graphene hydrogen hydrogen bonding phenanthrenes spectral analysis spectroscopy |
title | Quantum Tunneling Facilitates Water Motion across the Surface of Phenanthrene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Tunneling%20Facilitates%20Water%20Motion%20across%20the%20Surface%20of%20Phenanthrene&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Loru,%20Donatella&rft.date=2023-08-09&rft.volume=145&rft.issue=31&rft.spage=17201&rft.epage=17210&rft.pages=17201-17210&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c04281&rft_dat=%3Cproquest_pubme%3E3040458194%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843038405&rft_id=info:pmid/37494139&rfr_iscdi=true |