Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X‑ray Absorption Spectroscopy and Machine Learning

Transition metal-nitrogen-doped carbons (TMNCs) are a promising class of catalysts for the CO2 electrochemical reduction reaction. In particular, high CO2-to-CO conversion activities and selectivities were demonstrated for Ni-based TMNCs. Nonetheless, open questions remain about the nature, stabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2023-08, Vol.145 (31), p.17351-17366
Hauptverfasser: Martini, Andrea, Hursán, Dorottya, Timoshenko, Janis, Rüscher, Martina, Haase, Felix, Rettenmaier, Clara, Ortega, Eduardo, Etxebarria, Ane, Roldan Cuenya, Beatriz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17366
container_issue 31
container_start_page 17351
container_title Journal of the American Chemical Society
container_volume 145
creator Martini, Andrea
Hursán, Dorottya
Timoshenko, Janis
Rüscher, Martina
Haase, Felix
Rettenmaier, Clara
Ortega, Eduardo
Etxebarria, Ane
Roldan Cuenya, Beatriz
description Transition metal-nitrogen-doped carbons (TMNCs) are a promising class of catalysts for the CO2 electrochemical reduction reaction. In particular, high CO2-to-CO conversion activities and selectivities were demonstrated for Ni-based TMNCs. Nonetheless, open questions remain about the nature, stability, and evolution of the Ni active sites during the reaction. In this work, we address this issue by combining operando X-ray absorption spectroscopy with advanced data analysis. In particular, we show that the combination of unsupervised and supervised machine learning approaches is able to decipher the X-ray absorption near edge structure (XANES) of the TMNCs, disentangling the contributions of different metal sites coexisting in the working TMNC catalyst. Moreover, quantitative structural information about the local environment of active species, including their interaction with adsorbates, has been obtained, shedding light on the complex dynamic mechanism of the CO2 electroreduction.
doi_str_mv 10.1021/jacs.3c04826
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10416299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844680545</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-687317989a4ae0c4be2968751a1b9006a1946ee325a1a1cca63a292e52f8c14f3</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhS1ERUNhxwN4yWaK_8axVyiKUkAKitQfqTvrxvE0Eyb2YHsqZccrsO3j9UlwhkiIVVeWz_3OudI9CH2g5JISRj_twKZLbolQTL5CE1ozUtWUyddoQghh1VRJfo7eprQrX8EUfYPO-bRmggg9QU-3EeyP1j_gvHV48Ri6IbfB49Dgm6J2rprlsMdzyNAdUk64CXFE5yuGF52zOQY7DnNr8bXbDHb036Vj5qp3Efwm4PvnX78jHPBsnULsR-KmH83Jhv6AC4S_g9223uGlg-iL-x06a6BL7v3pvUB3V4vb-ddqufrybT5bVsCFypVUU06nWmkQ4IgVa8d00WoKdK0JkUC1kM5xVkORrAXJgWnmatYoS0XDL9Dnv7n9sN67jXU-R-hMH9s9xIMJ0Jr_J77dmofwaCgRVDKtS8LHU0IMPweXstm3ybquA-_CkAwn5dhSKU1eRJkShSS1qP-hpWCzC0P05QplqTnWbo61m1Pt_A-DGqJ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844680545</pqid></control><display><type>article</type><title>Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X‑ray Absorption Spectroscopy and Machine Learning</title><source>ACS Publications</source><creator>Martini, Andrea ; Hursán, Dorottya ; Timoshenko, Janis ; Rüscher, Martina ; Haase, Felix ; Rettenmaier, Clara ; Ortega, Eduardo ; Etxebarria, Ane ; Roldan Cuenya, Beatriz</creator><creatorcontrib>Martini, Andrea ; Hursán, Dorottya ; Timoshenko, Janis ; Rüscher, Martina ; Haase, Felix ; Rettenmaier, Clara ; Ortega, Eduardo ; Etxebarria, Ane ; Roldan Cuenya, Beatriz</creatorcontrib><description>Transition metal-nitrogen-doped carbons (TMNCs) are a promising class of catalysts for the CO2 electrochemical reduction reaction. In particular, high CO2-to-CO conversion activities and selectivities were demonstrated for Ni-based TMNCs. Nonetheless, open questions remain about the nature, stability, and evolution of the Ni active sites during the reaction. In this work, we address this issue by combining operando X-ray absorption spectroscopy with advanced data analysis. In particular, we show that the combination of unsupervised and supervised machine learning approaches is able to decipher the X-ray absorption near edge structure (XANES) of the TMNCs, disentangling the contributions of different metal sites coexisting in the working TMNC catalyst. Moreover, quantitative structural information about the local environment of active species, including their interaction with adsorbates, has been obtained, shedding light on the complex dynamic mechanism of the CO2 electroreduction.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c04826</identifier><identifier>PMID: 37524049</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>carbon dioxide ; catalysts ; electrochemistry ; X-ray absorption spectroscopy</subject><ispartof>Journal of the American Chemical Society, 2023-08, Vol.145 (31), p.17351-17366</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8820-2157 ; 0000-0003-1646-4312 ; 0000-0002-8025-307X ; 0000-0002-0643-5190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c04826$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c04826$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Martini, Andrea</creatorcontrib><creatorcontrib>Hursán, Dorottya</creatorcontrib><creatorcontrib>Timoshenko, Janis</creatorcontrib><creatorcontrib>Rüscher, Martina</creatorcontrib><creatorcontrib>Haase, Felix</creatorcontrib><creatorcontrib>Rettenmaier, Clara</creatorcontrib><creatorcontrib>Ortega, Eduardo</creatorcontrib><creatorcontrib>Etxebarria, Ane</creatorcontrib><creatorcontrib>Roldan Cuenya, Beatriz</creatorcontrib><title>Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X‑ray Absorption Spectroscopy and Machine Learning</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Transition metal-nitrogen-doped carbons (TMNCs) are a promising class of catalysts for the CO2 electrochemical reduction reaction. In particular, high CO2-to-CO conversion activities and selectivities were demonstrated for Ni-based TMNCs. Nonetheless, open questions remain about the nature, stability, and evolution of the Ni active sites during the reaction. In this work, we address this issue by combining operando X-ray absorption spectroscopy with advanced data analysis. In particular, we show that the combination of unsupervised and supervised machine learning approaches is able to decipher the X-ray absorption near edge structure (XANES) of the TMNCs, disentangling the contributions of different metal sites coexisting in the working TMNC catalyst. Moreover, quantitative structural information about the local environment of active species, including their interaction with adsorbates, has been obtained, shedding light on the complex dynamic mechanism of the CO2 electroreduction.</description><subject>carbon dioxide</subject><subject>catalysts</subject><subject>electrochemistry</subject><subject>X-ray absorption spectroscopy</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uEzEUhS1ERUNhxwN4yWaK_8axVyiKUkAKitQfqTvrxvE0Eyb2YHsqZccrsO3j9UlwhkiIVVeWz_3OudI9CH2g5JISRj_twKZLbolQTL5CE1ozUtWUyddoQghh1VRJfo7eprQrX8EUfYPO-bRmggg9QU-3EeyP1j_gvHV48Ri6IbfB49Dgm6J2rprlsMdzyNAdUk64CXFE5yuGF52zOQY7DnNr8bXbDHb036Vj5qp3Efwm4PvnX78jHPBsnULsR-KmH83Jhv6AC4S_g9223uGlg-iL-x06a6BL7v3pvUB3V4vb-ddqufrybT5bVsCFypVUU06nWmkQ4IgVa8d00WoKdK0JkUC1kM5xVkORrAXJgWnmatYoS0XDL9Dnv7n9sN67jXU-R-hMH9s9xIMJ0Jr_J77dmofwaCgRVDKtS8LHU0IMPweXstm3ybquA-_CkAwn5dhSKU1eRJkShSS1qP-hpWCzC0P05QplqTnWbo61m1Pt_A-DGqJ0</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>Martini, Andrea</creator><creator>Hursán, Dorottya</creator><creator>Timoshenko, Janis</creator><creator>Rüscher, Martina</creator><creator>Haase, Felix</creator><creator>Rettenmaier, Clara</creator><creator>Ortega, Eduardo</creator><creator>Etxebarria, Ane</creator><creator>Roldan Cuenya, Beatriz</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8820-2157</orcidid><orcidid>https://orcid.org/0000-0003-1646-4312</orcidid><orcidid>https://orcid.org/0000-0002-8025-307X</orcidid><orcidid>https://orcid.org/0000-0002-0643-5190</orcidid></search><sort><creationdate>20230809</creationdate><title>Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X‑ray Absorption Spectroscopy and Machine Learning</title><author>Martini, Andrea ; Hursán, Dorottya ; Timoshenko, Janis ; Rüscher, Martina ; Haase, Felix ; Rettenmaier, Clara ; Ortega, Eduardo ; Etxebarria, Ane ; Roldan Cuenya, Beatriz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-687317989a4ae0c4be2968751a1b9006a1946ee325a1a1cca63a292e52f8c14f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>carbon dioxide</topic><topic>catalysts</topic><topic>electrochemistry</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martini, Andrea</creatorcontrib><creatorcontrib>Hursán, Dorottya</creatorcontrib><creatorcontrib>Timoshenko, Janis</creatorcontrib><creatorcontrib>Rüscher, Martina</creatorcontrib><creatorcontrib>Haase, Felix</creatorcontrib><creatorcontrib>Rettenmaier, Clara</creatorcontrib><creatorcontrib>Ortega, Eduardo</creatorcontrib><creatorcontrib>Etxebarria, Ane</creatorcontrib><creatorcontrib>Roldan Cuenya, Beatriz</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martini, Andrea</au><au>Hursán, Dorottya</au><au>Timoshenko, Janis</au><au>Rüscher, Martina</au><au>Haase, Felix</au><au>Rettenmaier, Clara</au><au>Ortega, Eduardo</au><au>Etxebarria, Ane</au><au>Roldan Cuenya, Beatriz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X‑ray Absorption Spectroscopy and Machine Learning</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-08-09</date><risdate>2023</risdate><volume>145</volume><issue>31</issue><spage>17351</spage><epage>17366</epage><pages>17351-17366</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Transition metal-nitrogen-doped carbons (TMNCs) are a promising class of catalysts for the CO2 electrochemical reduction reaction. In particular, high CO2-to-CO conversion activities and selectivities were demonstrated for Ni-based TMNCs. Nonetheless, open questions remain about the nature, stability, and evolution of the Ni active sites during the reaction. In this work, we address this issue by combining operando X-ray absorption spectroscopy with advanced data analysis. In particular, we show that the combination of unsupervised and supervised machine learning approaches is able to decipher the X-ray absorption near edge structure (XANES) of the TMNCs, disentangling the contributions of different metal sites coexisting in the working TMNC catalyst. Moreover, quantitative structural information about the local environment of active species, including their interaction with adsorbates, has been obtained, shedding light on the complex dynamic mechanism of the CO2 electroreduction.</abstract><pub>American Chemical Society</pub><pmid>37524049</pmid><doi>10.1021/jacs.3c04826</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8820-2157</orcidid><orcidid>https://orcid.org/0000-0003-1646-4312</orcidid><orcidid>https://orcid.org/0000-0002-8025-307X</orcidid><orcidid>https://orcid.org/0000-0002-0643-5190</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2023-08, Vol.145 (31), p.17351-17366
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10416299
source ACS Publications
subjects carbon dioxide
catalysts
electrochemistry
X-ray absorption spectroscopy
title Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X‑ray Absorption Spectroscopy and Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20the%20Evolution%20of%20Single-Atom%20Catalysts%20for%20the%20CO2%20Electrocatalytic%20Reduction%20Using%20Operando%20X%E2%80%91ray%20Absorption%20Spectroscopy%20and%20Machine%20Learning&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Martini,%20Andrea&rft.date=2023-08-09&rft.volume=145&rft.issue=31&rft.spage=17351&rft.epage=17366&rft.pages=17351-17366&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c04826&rft_dat=%3Cproquest_pubme%3E2844680545%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844680545&rft_id=info:pmid/37524049&rfr_iscdi=true