Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X‑ray Absorption Spectroscopy and Machine Learning
Transition metal-nitrogen-doped carbons (TMNCs) are a promising class of catalysts for the CO2 electrochemical reduction reaction. In particular, high CO2-to-CO conversion activities and selectivities were demonstrated for Ni-based TMNCs. Nonetheless, open questions remain about the nature, stabilit...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2023-08, Vol.145 (31), p.17351-17366 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17366 |
---|---|
container_issue | 31 |
container_start_page | 17351 |
container_title | Journal of the American Chemical Society |
container_volume | 145 |
creator | Martini, Andrea Hursán, Dorottya Timoshenko, Janis Rüscher, Martina Haase, Felix Rettenmaier, Clara Ortega, Eduardo Etxebarria, Ane Roldan Cuenya, Beatriz |
description | Transition metal-nitrogen-doped carbons (TMNCs) are a promising class of catalysts for the CO2 electrochemical reduction reaction. In particular, high CO2-to-CO conversion activities and selectivities were demonstrated for Ni-based TMNCs. Nonetheless, open questions remain about the nature, stability, and evolution of the Ni active sites during the reaction. In this work, we address this issue by combining operando X-ray absorption spectroscopy with advanced data analysis. In particular, we show that the combination of unsupervised and supervised machine learning approaches is able to decipher the X-ray absorption near edge structure (XANES) of the TMNCs, disentangling the contributions of different metal sites coexisting in the working TMNC catalyst. Moreover, quantitative structural information about the local environment of active species, including their interaction with adsorbates, has been obtained, shedding light on the complex dynamic mechanism of the CO2 electroreduction. |
doi_str_mv | 10.1021/jacs.3c04826 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10416299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844680545</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-687317989a4ae0c4be2968751a1b9006a1946ee325a1a1cca63a292e52f8c14f3</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhS1ERUNhxwN4yWaK_8axVyiKUkAKitQfqTvrxvE0Eyb2YHsqZccrsO3j9UlwhkiIVVeWz_3OudI9CH2g5JISRj_twKZLbolQTL5CE1ozUtWUyddoQghh1VRJfo7eprQrX8EUfYPO-bRmggg9QU-3EeyP1j_gvHV48Ri6IbfB49Dgm6J2rprlsMdzyNAdUk64CXFE5yuGF52zOQY7DnNr8bXbDHb036Vj5qp3Efwm4PvnX78jHPBsnULsR-KmH83Jhv6AC4S_g9223uGlg-iL-x06a6BL7v3pvUB3V4vb-ddqufrybT5bVsCFypVUU06nWmkQ4IgVa8d00WoKdK0JkUC1kM5xVkORrAXJgWnmatYoS0XDL9Dnv7n9sN67jXU-R-hMH9s9xIMJ0Jr_J77dmofwaCgRVDKtS8LHU0IMPweXstm3ybquA-_CkAwn5dhSKU1eRJkShSS1qP-hpWCzC0P05QplqTnWbo61m1Pt_A-DGqJ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844680545</pqid></control><display><type>article</type><title>Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X‑ray Absorption Spectroscopy and Machine Learning</title><source>ACS Publications</source><creator>Martini, Andrea ; Hursán, Dorottya ; Timoshenko, Janis ; Rüscher, Martina ; Haase, Felix ; Rettenmaier, Clara ; Ortega, Eduardo ; Etxebarria, Ane ; Roldan Cuenya, Beatriz</creator><creatorcontrib>Martini, Andrea ; Hursán, Dorottya ; Timoshenko, Janis ; Rüscher, Martina ; Haase, Felix ; Rettenmaier, Clara ; Ortega, Eduardo ; Etxebarria, Ane ; Roldan Cuenya, Beatriz</creatorcontrib><description>Transition metal-nitrogen-doped carbons (TMNCs) are a promising class of catalysts for the CO2 electrochemical reduction reaction. In particular, high CO2-to-CO conversion activities and selectivities were demonstrated for Ni-based TMNCs. Nonetheless, open questions remain about the nature, stability, and evolution of the Ni active sites during the reaction. In this work, we address this issue by combining operando X-ray absorption spectroscopy with advanced data analysis. In particular, we show that the combination of unsupervised and supervised machine learning approaches is able to decipher the X-ray absorption near edge structure (XANES) of the TMNCs, disentangling the contributions of different metal sites coexisting in the working TMNC catalyst. Moreover, quantitative structural information about the local environment of active species, including their interaction with adsorbates, has been obtained, shedding light on the complex dynamic mechanism of the CO2 electroreduction.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c04826</identifier><identifier>PMID: 37524049</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>carbon dioxide ; catalysts ; electrochemistry ; X-ray absorption spectroscopy</subject><ispartof>Journal of the American Chemical Society, 2023-08, Vol.145 (31), p.17351-17366</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8820-2157 ; 0000-0003-1646-4312 ; 0000-0002-8025-307X ; 0000-0002-0643-5190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c04826$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c04826$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Martini, Andrea</creatorcontrib><creatorcontrib>Hursán, Dorottya</creatorcontrib><creatorcontrib>Timoshenko, Janis</creatorcontrib><creatorcontrib>Rüscher, Martina</creatorcontrib><creatorcontrib>Haase, Felix</creatorcontrib><creatorcontrib>Rettenmaier, Clara</creatorcontrib><creatorcontrib>Ortega, Eduardo</creatorcontrib><creatorcontrib>Etxebarria, Ane</creatorcontrib><creatorcontrib>Roldan Cuenya, Beatriz</creatorcontrib><title>Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X‑ray Absorption Spectroscopy and Machine Learning</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Transition metal-nitrogen-doped carbons (TMNCs) are a promising class of catalysts for the CO2 electrochemical reduction reaction. In particular, high CO2-to-CO conversion activities and selectivities were demonstrated for Ni-based TMNCs. Nonetheless, open questions remain about the nature, stability, and evolution of the Ni active sites during the reaction. In this work, we address this issue by combining operando X-ray absorption spectroscopy with advanced data analysis. In particular, we show that the combination of unsupervised and supervised machine learning approaches is able to decipher the X-ray absorption near edge structure (XANES) of the TMNCs, disentangling the contributions of different metal sites coexisting in the working TMNC catalyst. Moreover, quantitative structural information about the local environment of active species, including their interaction with adsorbates, has been obtained, shedding light on the complex dynamic mechanism of the CO2 electroreduction.</description><subject>carbon dioxide</subject><subject>catalysts</subject><subject>electrochemistry</subject><subject>X-ray absorption spectroscopy</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uEzEUhS1ERUNhxwN4yWaK_8axVyiKUkAKitQfqTvrxvE0Eyb2YHsqZccrsO3j9UlwhkiIVVeWz_3OudI9CH2g5JISRj_twKZLbolQTL5CE1ozUtWUyddoQghh1VRJfo7eprQrX8EUfYPO-bRmggg9QU-3EeyP1j_gvHV48Ri6IbfB49Dgm6J2rprlsMdzyNAdUk64CXFE5yuGF52zOQY7DnNr8bXbDHb036Vj5qp3Efwm4PvnX78jHPBsnULsR-KmH83Jhv6AC4S_g9223uGlg-iL-x06a6BL7v3pvUB3V4vb-ddqufrybT5bVsCFypVUU06nWmkQ4IgVa8d00WoKdK0JkUC1kM5xVkORrAXJgWnmatYoS0XDL9Dnv7n9sN67jXU-R-hMH9s9xIMJ0Jr_J77dmofwaCgRVDKtS8LHU0IMPweXstm3ybquA-_CkAwn5dhSKU1eRJkShSS1qP-hpWCzC0P05QplqTnWbo61m1Pt_A-DGqJ0</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>Martini, Andrea</creator><creator>Hursán, Dorottya</creator><creator>Timoshenko, Janis</creator><creator>Rüscher, Martina</creator><creator>Haase, Felix</creator><creator>Rettenmaier, Clara</creator><creator>Ortega, Eduardo</creator><creator>Etxebarria, Ane</creator><creator>Roldan Cuenya, Beatriz</creator><general>American Chemical Society</general><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8820-2157</orcidid><orcidid>https://orcid.org/0000-0003-1646-4312</orcidid><orcidid>https://orcid.org/0000-0002-8025-307X</orcidid><orcidid>https://orcid.org/0000-0002-0643-5190</orcidid></search><sort><creationdate>20230809</creationdate><title>Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X‑ray Absorption Spectroscopy and Machine Learning</title><author>Martini, Andrea ; Hursán, Dorottya ; Timoshenko, Janis ; Rüscher, Martina ; Haase, Felix ; Rettenmaier, Clara ; Ortega, Eduardo ; Etxebarria, Ane ; Roldan Cuenya, Beatriz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-687317989a4ae0c4be2968751a1b9006a1946ee325a1a1cca63a292e52f8c14f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>carbon dioxide</topic><topic>catalysts</topic><topic>electrochemistry</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martini, Andrea</creatorcontrib><creatorcontrib>Hursán, Dorottya</creatorcontrib><creatorcontrib>Timoshenko, Janis</creatorcontrib><creatorcontrib>Rüscher, Martina</creatorcontrib><creatorcontrib>Haase, Felix</creatorcontrib><creatorcontrib>Rettenmaier, Clara</creatorcontrib><creatorcontrib>Ortega, Eduardo</creatorcontrib><creatorcontrib>Etxebarria, Ane</creatorcontrib><creatorcontrib>Roldan Cuenya, Beatriz</creatorcontrib><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martini, Andrea</au><au>Hursán, Dorottya</au><au>Timoshenko, Janis</au><au>Rüscher, Martina</au><au>Haase, Felix</au><au>Rettenmaier, Clara</au><au>Ortega, Eduardo</au><au>Etxebarria, Ane</au><au>Roldan Cuenya, Beatriz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X‑ray Absorption Spectroscopy and Machine Learning</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-08-09</date><risdate>2023</risdate><volume>145</volume><issue>31</issue><spage>17351</spage><epage>17366</epage><pages>17351-17366</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Transition metal-nitrogen-doped carbons (TMNCs) are a promising class of catalysts for the CO2 electrochemical reduction reaction. In particular, high CO2-to-CO conversion activities and selectivities were demonstrated for Ni-based TMNCs. Nonetheless, open questions remain about the nature, stability, and evolution of the Ni active sites during the reaction. In this work, we address this issue by combining operando X-ray absorption spectroscopy with advanced data analysis. In particular, we show that the combination of unsupervised and supervised machine learning approaches is able to decipher the X-ray absorption near edge structure (XANES) of the TMNCs, disentangling the contributions of different metal sites coexisting in the working TMNC catalyst. Moreover, quantitative structural information about the local environment of active species, including their interaction with adsorbates, has been obtained, shedding light on the complex dynamic mechanism of the CO2 electroreduction.</abstract><pub>American Chemical Society</pub><pmid>37524049</pmid><doi>10.1021/jacs.3c04826</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8820-2157</orcidid><orcidid>https://orcid.org/0000-0003-1646-4312</orcidid><orcidid>https://orcid.org/0000-0002-8025-307X</orcidid><orcidid>https://orcid.org/0000-0002-0643-5190</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2023-08, Vol.145 (31), p.17351-17366 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10416299 |
source | ACS Publications |
subjects | carbon dioxide catalysts electrochemistry X-ray absorption spectroscopy |
title | Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X‑ray Absorption Spectroscopy and Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20the%20Evolution%20of%20Single-Atom%20Catalysts%20for%20the%20CO2%20Electrocatalytic%20Reduction%20Using%20Operando%20X%E2%80%91ray%20Absorption%20Spectroscopy%20and%20Machine%20Learning&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Martini,%20Andrea&rft.date=2023-08-09&rft.volume=145&rft.issue=31&rft.spage=17351&rft.epage=17366&rft.pages=17351-17366&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c04826&rft_dat=%3Cproquest_pubme%3E2844680545%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844680545&rft_id=info:pmid/37524049&rfr_iscdi=true |