DeepAIR: A deep learning framework for effective integration of sequence and 3D structure to enable adaptive immune receptor analysis

Structural docking between the adaptive immune receptors (AIRs), including T cell receptors (TCRs) and B cell receptors (BCRs), and their cognate antigens are one of the most fundamental processes in adaptive immunity. However, current methods for predicting AIR-antigen binding largely rely on seque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2023-08, Vol.9 (32), p.eabo5128
Hauptverfasser: Zhao, Yu, He, Bing, Xu, Fan, Li, Chen, Xu, Zhimeng, Su, Xiaona, He, Haohuai, Huang, Yueshan, Rossjohn, Jamie, Song, Jiangning, Yao, Jianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 32
container_start_page eabo5128
container_title Science advances
container_volume 9
creator Zhao, Yu
He, Bing
Xu, Fan
Li, Chen
Xu, Zhimeng
Su, Xiaona
He, Haohuai
Huang, Yueshan
Rossjohn, Jamie
Song, Jiangning
Yao, Jianhua
description Structural docking between the adaptive immune receptors (AIRs), including T cell receptors (TCRs) and B cell receptors (BCRs), and their cognate antigens are one of the most fundamental processes in adaptive immunity. However, current methods for predicting AIR-antigen binding largely rely on sequence-derived features of AIRs, omitting the structure features that are essential for binding affinity. In this study, we present a deep learning framework, termed DeepAIR, for the accurate prediction of AIR-antigen binding by integrating both sequence and structure features of AIRs. DeepAIR achieves a Pearson's correlation of 0.813 in predicting the binding affinity of TCR, and a median area under the receiver-operating characteristic curve (AUC) of 0.904 and 0.942 in predicting the binding reactivity of TCR and BCR, respectively. Meanwhile, using TCR and BCR repertoire, DeepAIR correctly identifies every patient with nasopharyngeal carcinoma and inflammatory bowel disease in test data. Thus, DeepAIR improves the AIR-antigen binding prediction that facilitates the study of adaptive immunity.
doi_str_mv 10.1126/sciadv.abo5128
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10411891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848843220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-bdfbd91eadc70b9cc32b7d338ee2711ed062973ef44e096c7027f4b497b9ba3f3</originalsourceid><addsrcrecordid>eNpVUUtrVDEUDqLYUrt1KVm6mTGv-4gbGVofhYIgug55nIzRe5NrkjulP8D_bWTGUlfng-9xzuFD6CUlW0pZ_6bYoN1hq03qKBufoHPGh27DOjE-fYTP0GUpPwghVPR9R-VzdNaoru9Ed45-XwMsu5svb_EOuwbxBDrHEPfYZz3DXco_sU8Zg_dgazgADrHCPusaUsTJ4wK_VogWsI4O82tcal5tXTPgmjBEbaZGOb0cvfO8RsAZLCy1peqop_sSygv0zOupwOVpXqBvH95_vfq0uf388eZqd7uxXNK6Mc4bJyloZwdipLWcmcFxPgKwgVJwpGdy4OCFACL7JmKDF0bIwUijuecX6N0xd1nNDM5CrFlPaslh1vleJR3U_0wM39U-HRQlgtJR0pbw-pSQU3u8VDWHYmGadIS0FsVGMY6CM0aadHuU2pxKyeAf9lCi_vanjv2pU3_N8OrxdQ_yf23xP1bpnEU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848843220</pqid></control><display><type>article</type><title>DeepAIR: A deep learning framework for effective integration of sequence and 3D structure to enable adaptive immune receptor analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhao, Yu ; He, Bing ; Xu, Fan ; Li, Chen ; Xu, Zhimeng ; Su, Xiaona ; He, Haohuai ; Huang, Yueshan ; Rossjohn, Jamie ; Song, Jiangning ; Yao, Jianhua</creator><creatorcontrib>Zhao, Yu ; He, Bing ; Xu, Fan ; Li, Chen ; Xu, Zhimeng ; Su, Xiaona ; He, Haohuai ; Huang, Yueshan ; Rossjohn, Jamie ; Song, Jiangning ; Yao, Jianhua</creatorcontrib><description>Structural docking between the adaptive immune receptors (AIRs), including T cell receptors (TCRs) and B cell receptors (BCRs), and their cognate antigens are one of the most fundamental processes in adaptive immunity. However, current methods for predicting AIR-antigen binding largely rely on sequence-derived features of AIRs, omitting the structure features that are essential for binding affinity. In this study, we present a deep learning framework, termed DeepAIR, for the accurate prediction of AIR-antigen binding by integrating both sequence and structure features of AIRs. DeepAIR achieves a Pearson's correlation of 0.813 in predicting the binding affinity of TCR, and a median area under the receiver-operating characteristic curve (AUC) of 0.904 and 0.942 in predicting the binding reactivity of TCR and BCR, respectively. Meanwhile, using TCR and BCR repertoire, DeepAIR correctly identifies every patient with nasopharyngeal carcinoma and inflammatory bowel disease in test data. Thus, DeepAIR improves the AIR-antigen binding prediction that facilitates the study of adaptive immunity.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abo5128</identifier><identifier>PMID: 37556545</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adaptive Immunity ; Antigens ; Biomedicine and Life Sciences ; Deep Learning ; Humans ; Immunology ; Receptors, Antigen, B-Cell - metabolism ; Receptors, Antigen, T-Cell - metabolism ; SciAdv r-articles</subject><ispartof>Science advances, 2023-08, Vol.9 (32), p.eabo5128</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-bdfbd91eadc70b9cc32b7d338ee2711ed062973ef44e096c7027f4b497b9ba3f3</citedby><cites>FETCH-LOGICAL-c391t-bdfbd91eadc70b9cc32b7d338ee2711ed062973ef44e096c7027f4b497b9ba3f3</cites><orcidid>0000-0002-1847-754X ; 0000-0001-8031-9086 ; 0000-0003-3831-3996 ; 0000-0003-1719-9290 ; 0000-0003-1042-9786 ; 0000-0001-8179-4903 ; 0000-0002-2020-7522 ; 0000-0001-9157-9596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411891/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411891/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37556545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>Xu, Fan</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Xu, Zhimeng</creatorcontrib><creatorcontrib>Su, Xiaona</creatorcontrib><creatorcontrib>He, Haohuai</creatorcontrib><creatorcontrib>Huang, Yueshan</creatorcontrib><creatorcontrib>Rossjohn, Jamie</creatorcontrib><creatorcontrib>Song, Jiangning</creatorcontrib><creatorcontrib>Yao, Jianhua</creatorcontrib><title>DeepAIR: A deep learning framework for effective integration of sequence and 3D structure to enable adaptive immune receptor analysis</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Structural docking between the adaptive immune receptors (AIRs), including T cell receptors (TCRs) and B cell receptors (BCRs), and their cognate antigens are one of the most fundamental processes in adaptive immunity. However, current methods for predicting AIR-antigen binding largely rely on sequence-derived features of AIRs, omitting the structure features that are essential for binding affinity. In this study, we present a deep learning framework, termed DeepAIR, for the accurate prediction of AIR-antigen binding by integrating both sequence and structure features of AIRs. DeepAIR achieves a Pearson's correlation of 0.813 in predicting the binding affinity of TCR, and a median area under the receiver-operating characteristic curve (AUC) of 0.904 and 0.942 in predicting the binding reactivity of TCR and BCR, respectively. Meanwhile, using TCR and BCR repertoire, DeepAIR correctly identifies every patient with nasopharyngeal carcinoma and inflammatory bowel disease in test data. Thus, DeepAIR improves the AIR-antigen binding prediction that facilitates the study of adaptive immunity.</description><subject>Adaptive Immunity</subject><subject>Antigens</subject><subject>Biomedicine and Life Sciences</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Immunology</subject><subject>Receptors, Antigen, B-Cell - metabolism</subject><subject>Receptors, Antigen, T-Cell - metabolism</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUUtrVDEUDqLYUrt1KVm6mTGv-4gbGVofhYIgug55nIzRe5NrkjulP8D_bWTGUlfng-9xzuFD6CUlW0pZ_6bYoN1hq03qKBufoHPGh27DOjE-fYTP0GUpPwghVPR9R-VzdNaoru9Ed45-XwMsu5svb_EOuwbxBDrHEPfYZz3DXco_sU8Zg_dgazgADrHCPusaUsTJ4wK_VogWsI4O82tcal5tXTPgmjBEbaZGOb0cvfO8RsAZLCy1peqop_sSygv0zOupwOVpXqBvH95_vfq0uf388eZqd7uxXNK6Mc4bJyloZwdipLWcmcFxPgKwgVJwpGdy4OCFACL7JmKDF0bIwUijuecX6N0xd1nNDM5CrFlPaslh1vleJR3U_0wM39U-HRQlgtJR0pbw-pSQU3u8VDWHYmGadIS0FsVGMY6CM0aadHuU2pxKyeAf9lCi_vanjv2pU3_N8OrxdQ_yf23xP1bpnEU</recordid><startdate>20230809</startdate><enddate>20230809</enddate><creator>Zhao, Yu</creator><creator>He, Bing</creator><creator>Xu, Fan</creator><creator>Li, Chen</creator><creator>Xu, Zhimeng</creator><creator>Su, Xiaona</creator><creator>He, Haohuai</creator><creator>Huang, Yueshan</creator><creator>Rossjohn, Jamie</creator><creator>Song, Jiangning</creator><creator>Yao, Jianhua</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1847-754X</orcidid><orcidid>https://orcid.org/0000-0001-8031-9086</orcidid><orcidid>https://orcid.org/0000-0003-3831-3996</orcidid><orcidid>https://orcid.org/0000-0003-1719-9290</orcidid><orcidid>https://orcid.org/0000-0003-1042-9786</orcidid><orcidid>https://orcid.org/0000-0001-8179-4903</orcidid><orcidid>https://orcid.org/0000-0002-2020-7522</orcidid><orcidid>https://orcid.org/0000-0001-9157-9596</orcidid></search><sort><creationdate>20230809</creationdate><title>DeepAIR: A deep learning framework for effective integration of sequence and 3D structure to enable adaptive immune receptor analysis</title><author>Zhao, Yu ; He, Bing ; Xu, Fan ; Li, Chen ; Xu, Zhimeng ; Su, Xiaona ; He, Haohuai ; Huang, Yueshan ; Rossjohn, Jamie ; Song, Jiangning ; Yao, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-bdfbd91eadc70b9cc32b7d338ee2711ed062973ef44e096c7027f4b497b9ba3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive Immunity</topic><topic>Antigens</topic><topic>Biomedicine and Life Sciences</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Immunology</topic><topic>Receptors, Antigen, B-Cell - metabolism</topic><topic>Receptors, Antigen, T-Cell - metabolism</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>Xu, Fan</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Xu, Zhimeng</creatorcontrib><creatorcontrib>Su, Xiaona</creatorcontrib><creatorcontrib>He, Haohuai</creatorcontrib><creatorcontrib>Huang, Yueshan</creatorcontrib><creatorcontrib>Rossjohn, Jamie</creatorcontrib><creatorcontrib>Song, Jiangning</creatorcontrib><creatorcontrib>Yao, Jianhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yu</au><au>He, Bing</au><au>Xu, Fan</au><au>Li, Chen</au><au>Xu, Zhimeng</au><au>Su, Xiaona</au><au>He, Haohuai</au><au>Huang, Yueshan</au><au>Rossjohn, Jamie</au><au>Song, Jiangning</au><au>Yao, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepAIR: A deep learning framework for effective integration of sequence and 3D structure to enable adaptive immune receptor analysis</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2023-08-09</date><risdate>2023</risdate><volume>9</volume><issue>32</issue><spage>eabo5128</spage><pages>eabo5128-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Structural docking between the adaptive immune receptors (AIRs), including T cell receptors (TCRs) and B cell receptors (BCRs), and their cognate antigens are one of the most fundamental processes in adaptive immunity. However, current methods for predicting AIR-antigen binding largely rely on sequence-derived features of AIRs, omitting the structure features that are essential for binding affinity. In this study, we present a deep learning framework, termed DeepAIR, for the accurate prediction of AIR-antigen binding by integrating both sequence and structure features of AIRs. DeepAIR achieves a Pearson's correlation of 0.813 in predicting the binding affinity of TCR, and a median area under the receiver-operating characteristic curve (AUC) of 0.904 and 0.942 in predicting the binding reactivity of TCR and BCR, respectively. Meanwhile, using TCR and BCR repertoire, DeepAIR correctly identifies every patient with nasopharyngeal carcinoma and inflammatory bowel disease in test data. Thus, DeepAIR improves the AIR-antigen binding prediction that facilitates the study of adaptive immunity.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>37556545</pmid><doi>10.1126/sciadv.abo5128</doi><orcidid>https://orcid.org/0000-0002-1847-754X</orcidid><orcidid>https://orcid.org/0000-0001-8031-9086</orcidid><orcidid>https://orcid.org/0000-0003-3831-3996</orcidid><orcidid>https://orcid.org/0000-0003-1719-9290</orcidid><orcidid>https://orcid.org/0000-0003-1042-9786</orcidid><orcidid>https://orcid.org/0000-0001-8179-4903</orcidid><orcidid>https://orcid.org/0000-0002-2020-7522</orcidid><orcidid>https://orcid.org/0000-0001-9157-9596</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2023-08, Vol.9 (32), p.eabo5128
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10411891
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adaptive Immunity
Antigens
Biomedicine and Life Sciences
Deep Learning
Humans
Immunology
Receptors, Antigen, B-Cell - metabolism
Receptors, Antigen, T-Cell - metabolism
SciAdv r-articles
title DeepAIR: A deep learning framework for effective integration of sequence and 3D structure to enable adaptive immune receptor analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepAIR:%20A%20deep%20learning%20framework%20for%20effective%20integration%20of%20sequence%20and%203D%20structure%20to%20enable%20adaptive%20immune%20receptor%20analysis&rft.jtitle=Science%20advances&rft.au=Zhao,%20Yu&rft.date=2023-08-09&rft.volume=9&rft.issue=32&rft.spage=eabo5128&rft.pages=eabo5128-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abo5128&rft_dat=%3Cproquest_pubme%3E2848843220%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848843220&rft_id=info:pmid/37556545&rfr_iscdi=true