Deep Learning-Generated Synthetic MR Imaging STIR Spine Images Are Superior in Image Quality and Diagnostically Equivalent to Conventional STIR: A Multicenter, Multireader Trial

Deep learning image reconstruction allows faster MR imaging acquisitions while matching or exceeding the standard of care and can create synthetic images from existing data sets. This multicenter, multireader spine study evaluated the performance of synthetically created STIR compared with acquired...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of neuroradiology : AJNR 2023-08, Vol.44 (8), p.987-993
Hauptverfasser: Tanenbaum, L N, Bash, S C, Zaharchuk, G, Shankaranarayanan, A, Chamberlain, R, Wintermark, M, Beaulieu, C, Novick, M, Wang, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 993
container_issue 8
container_start_page 987
container_title American journal of neuroradiology : AJNR
container_volume 44
creator Tanenbaum, L N
Bash, S C
Zaharchuk, G
Shankaranarayanan, A
Chamberlain, R
Wintermark, M
Beaulieu, C
Novick, M
Wang, L
description Deep learning image reconstruction allows faster MR imaging acquisitions while matching or exceeding the standard of care and can create synthetic images from existing data sets. This multicenter, multireader spine study evaluated the performance of synthetically created STIR compared with acquired STIR. From a multicenter, multiscanner data base of 328 clinical cases, a nonreader neuroradiologist randomly selected 110 spine MR imaging studies in 93 patients (sagittal T1, T2, and STIR) and classified them into 5 categories of disease and healthy. A DICOM-based deep learning application generated a synthetically created STIR series from the sagittal T1 and T2 images. Five radiologists (3 neuroradiologists, 1 musculoskeletal radiologist, and 1 general radiologist) rated the STIR quality and classified disease pathology (study 1, = 80). They then assessed the presence or absence of findings typically evaluated with STIR in patients with trauma (study 2, = 30). The readers evaluated studies with either acquired STIR or synthetically created STIR in a blinded and randomized fashion with a 1-month washout period. The interchangeability of acquired STIR and synthetically created STIR was assessed using a noninferiority threshold of 10%. For classification, there was a decrease in interreader agreement expected by randomly introducing synthetically created STIR of 3.23%. For trauma, there was an overall increase in interreader agreement by +1.9%. The lower bound of confidence for both exceeded the noninferiority threshold, indicating interchangeability of synthetically created STIR with acquired STIR. Both the Wilcoxon signed-rank and tests showed higher image-quality scores for synthetically created STIR over acquired STIR (
doi_str_mv 10.3174/ajnr.A7920
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10411840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835273620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-edf949f0bd37db2e62bb152a58d62a357eb3f0fd11cdeb3767f41f2559a8ef843</originalsourceid><addsrcrecordid>eNpVkd1uEzEQhS0EoqFwwwMgXyLEFv-s12tuUJSWEikVogkSd5Y3nk1dOfbW3o2Ux-IN2SSlgquZOXP0zUgHobeUXHAqy0_mPqSLqVSMPEMTqnhVKKF-PUcTQpUoKkrqM_Qq53tCiFCSvURnXJa0LAWboN-XAB1egEnBhU1xDQGS6cHi5T70d9C7Nb65xfOt2YxrvFzNb_GycwGOEmQ8TYCXQwfJxYRdOMn4x2C86_fYBIsvndmEmEeS8X6Prx4GtzMeQo_7iGcx7MbWxWD8kf4ZT_HN4Ef3KEP6eBoSGAsJr5Iz_jV60Rqf4c1jPUc_v16tZt-Kxffr-Wy6KNZcqr4A26pStaSxXNqGQcWahgpmRG0rZriQ0PCWtJbStR1bWcm2pC0TQpka2rrk5-jLidsNzRbs4Z9kvO6S25q019E4_f8muDu9iTtNSUlpXZKR8P6RkOLDALnXW5fX4L0JEIesWc0Fk7xiB-uHk3WdYs4J2qc7lOhDyPoQsj6GPJrf_fvZk_VvqvwPGAGnAg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835273620</pqid></control><display><type>article</type><title>Deep Learning-Generated Synthetic MR Imaging STIR Spine Images Are Superior in Image Quality and Diagnostically Equivalent to Conventional STIR: A Multicenter, Multireader Trial</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Tanenbaum, L N ; Bash, S C ; Zaharchuk, G ; Shankaranarayanan, A ; Chamberlain, R ; Wintermark, M ; Beaulieu, C ; Novick, M ; Wang, L</creator><creatorcontrib>Tanenbaum, L N ; Bash, S C ; Zaharchuk, G ; Shankaranarayanan, A ; Chamberlain, R ; Wintermark, M ; Beaulieu, C ; Novick, M ; Wang, L</creatorcontrib><description>Deep learning image reconstruction allows faster MR imaging acquisitions while matching or exceeding the standard of care and can create synthetic images from existing data sets. This multicenter, multireader spine study evaluated the performance of synthetically created STIR compared with acquired STIR. From a multicenter, multiscanner data base of 328 clinical cases, a nonreader neuroradiologist randomly selected 110 spine MR imaging studies in 93 patients (sagittal T1, T2, and STIR) and classified them into 5 categories of disease and healthy. A DICOM-based deep learning application generated a synthetically created STIR series from the sagittal T1 and T2 images. Five radiologists (3 neuroradiologists, 1 musculoskeletal radiologist, and 1 general radiologist) rated the STIR quality and classified disease pathology (study 1, = 80). They then assessed the presence or absence of findings typically evaluated with STIR in patients with trauma (study 2, = 30). The readers evaluated studies with either acquired STIR or synthetically created STIR in a blinded and randomized fashion with a 1-month washout period. The interchangeability of acquired STIR and synthetically created STIR was assessed using a noninferiority threshold of 10%. For classification, there was a decrease in interreader agreement expected by randomly introducing synthetically created STIR of 3.23%. For trauma, there was an overall increase in interreader agreement by +1.9%. The lower bound of confidence for both exceeded the noninferiority threshold, indicating interchangeability of synthetically created STIR with acquired STIR. Both the Wilcoxon signed-rank and tests showed higher image-quality scores for synthetically created STIR over acquired STIR ( &lt; .0001). Synthetically created STIR spine MR images were diagnostically interchangeable with acquired STIR, while providing significantly higher image quality, suggesting routine clinical practice potential.</description><identifier>ISSN: 0195-6108</identifier><identifier>ISSN: 1936-959X</identifier><identifier>EISSN: 1936-959X</identifier><identifier>DOI: 10.3174/ajnr.A7920</identifier><identifier>PMID: 37414452</identifier><language>eng</language><publisher>United States: American Society of Neuroradiology</publisher><subject>Deep Learning ; Humans ; Image Processing, Computer-Assisted ; Magnetic Resonance Imaging - methods ; Spine ; Spine - diagnostic imaging</subject><ispartof>American journal of neuroradiology : AJNR, 2023-08, Vol.44 (8), p.987-993</ispartof><rights>2023 by American Journal of Neuroradiology.</rights><rights>2023 by American Journal of Neuroradiology 2023 American Journal of Neuroradiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-edf949f0bd37db2e62bb152a58d62a357eb3f0fd11cdeb3767f41f2559a8ef843</citedby><cites>FETCH-LOGICAL-c379t-edf949f0bd37db2e62bb152a58d62a357eb3f0fd11cdeb3767f41f2559a8ef843</cites><orcidid>0000-0001-5781-8848 ; 0000-0002-2705-1268 ; 0000-0003-3326-3192 ; 0000-0002-2572-1010 ; 0000-0002-6036-1962 ; 0000-0002-5382-5431 ; 0000-0001-9395-8768 ; 0000-0002-6726-3951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411840/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411840/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37414452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanenbaum, L N</creatorcontrib><creatorcontrib>Bash, S C</creatorcontrib><creatorcontrib>Zaharchuk, G</creatorcontrib><creatorcontrib>Shankaranarayanan, A</creatorcontrib><creatorcontrib>Chamberlain, R</creatorcontrib><creatorcontrib>Wintermark, M</creatorcontrib><creatorcontrib>Beaulieu, C</creatorcontrib><creatorcontrib>Novick, M</creatorcontrib><creatorcontrib>Wang, L</creatorcontrib><title>Deep Learning-Generated Synthetic MR Imaging STIR Spine Images Are Superior in Image Quality and Diagnostically Equivalent to Conventional STIR: A Multicenter, Multireader Trial</title><title>American journal of neuroradiology : AJNR</title><addtitle>AJNR Am J Neuroradiol</addtitle><description>Deep learning image reconstruction allows faster MR imaging acquisitions while matching or exceeding the standard of care and can create synthetic images from existing data sets. This multicenter, multireader spine study evaluated the performance of synthetically created STIR compared with acquired STIR. From a multicenter, multiscanner data base of 328 clinical cases, a nonreader neuroradiologist randomly selected 110 spine MR imaging studies in 93 patients (sagittal T1, T2, and STIR) and classified them into 5 categories of disease and healthy. A DICOM-based deep learning application generated a synthetically created STIR series from the sagittal T1 and T2 images. Five radiologists (3 neuroradiologists, 1 musculoskeletal radiologist, and 1 general radiologist) rated the STIR quality and classified disease pathology (study 1, = 80). They then assessed the presence or absence of findings typically evaluated with STIR in patients with trauma (study 2, = 30). The readers evaluated studies with either acquired STIR or synthetically created STIR in a blinded and randomized fashion with a 1-month washout period. The interchangeability of acquired STIR and synthetically created STIR was assessed using a noninferiority threshold of 10%. For classification, there was a decrease in interreader agreement expected by randomly introducing synthetically created STIR of 3.23%. For trauma, there was an overall increase in interreader agreement by +1.9%. The lower bound of confidence for both exceeded the noninferiority threshold, indicating interchangeability of synthetically created STIR with acquired STIR. Both the Wilcoxon signed-rank and tests showed higher image-quality scores for synthetically created STIR over acquired STIR ( &lt; .0001). Synthetically created STIR spine MR images were diagnostically interchangeable with acquired STIR, while providing significantly higher image quality, suggesting routine clinical practice potential.</description><subject>Deep Learning</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Spine</subject><subject>Spine - diagnostic imaging</subject><issn>0195-6108</issn><issn>1936-959X</issn><issn>1936-959X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkd1uEzEQhS0EoqFwwwMgXyLEFv-s12tuUJSWEikVogkSd5Y3nk1dOfbW3o2Ux-IN2SSlgquZOXP0zUgHobeUXHAqy0_mPqSLqVSMPEMTqnhVKKF-PUcTQpUoKkrqM_Qq53tCiFCSvURnXJa0LAWboN-XAB1egEnBhU1xDQGS6cHi5T70d9C7Nb65xfOt2YxrvFzNb_GycwGOEmQ8TYCXQwfJxYRdOMn4x2C86_fYBIsvndmEmEeS8X6Prx4GtzMeQo_7iGcx7MbWxWD8kf4ZT_HN4Ef3KEP6eBoSGAsJr5Iz_jV60Rqf4c1jPUc_v16tZt-Kxffr-Wy6KNZcqr4A26pStaSxXNqGQcWahgpmRG0rZriQ0PCWtJbStR1bWcm2pC0TQpka2rrk5-jLidsNzRbs4Z9kvO6S25q019E4_f8muDu9iTtNSUlpXZKR8P6RkOLDALnXW5fX4L0JEIesWc0Fk7xiB-uHk3WdYs4J2qc7lOhDyPoQsj6GPJrf_fvZk_VvqvwPGAGnAg</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Tanenbaum, L N</creator><creator>Bash, S C</creator><creator>Zaharchuk, G</creator><creator>Shankaranarayanan, A</creator><creator>Chamberlain, R</creator><creator>Wintermark, M</creator><creator>Beaulieu, C</creator><creator>Novick, M</creator><creator>Wang, L</creator><general>American Society of Neuroradiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5781-8848</orcidid><orcidid>https://orcid.org/0000-0002-2705-1268</orcidid><orcidid>https://orcid.org/0000-0003-3326-3192</orcidid><orcidid>https://orcid.org/0000-0002-2572-1010</orcidid><orcidid>https://orcid.org/0000-0002-6036-1962</orcidid><orcidid>https://orcid.org/0000-0002-5382-5431</orcidid><orcidid>https://orcid.org/0000-0001-9395-8768</orcidid><orcidid>https://orcid.org/0000-0002-6726-3951</orcidid></search><sort><creationdate>202308</creationdate><title>Deep Learning-Generated Synthetic MR Imaging STIR Spine Images Are Superior in Image Quality and Diagnostically Equivalent to Conventional STIR: A Multicenter, Multireader Trial</title><author>Tanenbaum, L N ; Bash, S C ; Zaharchuk, G ; Shankaranarayanan, A ; Chamberlain, R ; Wintermark, M ; Beaulieu, C ; Novick, M ; Wang, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-edf949f0bd37db2e62bb152a58d62a357eb3f0fd11cdeb3767f41f2559a8ef843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deep Learning</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Spine</topic><topic>Spine - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanenbaum, L N</creatorcontrib><creatorcontrib>Bash, S C</creatorcontrib><creatorcontrib>Zaharchuk, G</creatorcontrib><creatorcontrib>Shankaranarayanan, A</creatorcontrib><creatorcontrib>Chamberlain, R</creatorcontrib><creatorcontrib>Wintermark, M</creatorcontrib><creatorcontrib>Beaulieu, C</creatorcontrib><creatorcontrib>Novick, M</creatorcontrib><creatorcontrib>Wang, L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of neuroradiology : AJNR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanenbaum, L N</au><au>Bash, S C</au><au>Zaharchuk, G</au><au>Shankaranarayanan, A</au><au>Chamberlain, R</au><au>Wintermark, M</au><au>Beaulieu, C</au><au>Novick, M</au><au>Wang, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Generated Synthetic MR Imaging STIR Spine Images Are Superior in Image Quality and Diagnostically Equivalent to Conventional STIR: A Multicenter, Multireader Trial</atitle><jtitle>American journal of neuroradiology : AJNR</jtitle><addtitle>AJNR Am J Neuroradiol</addtitle><date>2023-08</date><risdate>2023</risdate><volume>44</volume><issue>8</issue><spage>987</spage><epage>993</epage><pages>987-993</pages><issn>0195-6108</issn><issn>1936-959X</issn><eissn>1936-959X</eissn><abstract>Deep learning image reconstruction allows faster MR imaging acquisitions while matching or exceeding the standard of care and can create synthetic images from existing data sets. This multicenter, multireader spine study evaluated the performance of synthetically created STIR compared with acquired STIR. From a multicenter, multiscanner data base of 328 clinical cases, a nonreader neuroradiologist randomly selected 110 spine MR imaging studies in 93 patients (sagittal T1, T2, and STIR) and classified them into 5 categories of disease and healthy. A DICOM-based deep learning application generated a synthetically created STIR series from the sagittal T1 and T2 images. Five radiologists (3 neuroradiologists, 1 musculoskeletal radiologist, and 1 general radiologist) rated the STIR quality and classified disease pathology (study 1, = 80). They then assessed the presence or absence of findings typically evaluated with STIR in patients with trauma (study 2, = 30). The readers evaluated studies with either acquired STIR or synthetically created STIR in a blinded and randomized fashion with a 1-month washout period. The interchangeability of acquired STIR and synthetically created STIR was assessed using a noninferiority threshold of 10%. For classification, there was a decrease in interreader agreement expected by randomly introducing synthetically created STIR of 3.23%. For trauma, there was an overall increase in interreader agreement by +1.9%. The lower bound of confidence for both exceeded the noninferiority threshold, indicating interchangeability of synthetically created STIR with acquired STIR. Both the Wilcoxon signed-rank and tests showed higher image-quality scores for synthetically created STIR over acquired STIR ( &lt; .0001). Synthetically created STIR spine MR images were diagnostically interchangeable with acquired STIR, while providing significantly higher image quality, suggesting routine clinical practice potential.</abstract><cop>United States</cop><pub>American Society of Neuroradiology</pub><pmid>37414452</pmid><doi>10.3174/ajnr.A7920</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5781-8848</orcidid><orcidid>https://orcid.org/0000-0002-2705-1268</orcidid><orcidid>https://orcid.org/0000-0003-3326-3192</orcidid><orcidid>https://orcid.org/0000-0002-2572-1010</orcidid><orcidid>https://orcid.org/0000-0002-6036-1962</orcidid><orcidid>https://orcid.org/0000-0002-5382-5431</orcidid><orcidid>https://orcid.org/0000-0001-9395-8768</orcidid><orcidid>https://orcid.org/0000-0002-6726-3951</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0195-6108
ispartof American journal of neuroradiology : AJNR, 2023-08, Vol.44 (8), p.987-993
issn 0195-6108
1936-959X
1936-959X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10411840
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Deep Learning
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging - methods
Spine
Spine - diagnostic imaging
title Deep Learning-Generated Synthetic MR Imaging STIR Spine Images Are Superior in Image Quality and Diagnostically Equivalent to Conventional STIR: A Multicenter, Multireader Trial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Generated%20Synthetic%20MR%20Imaging%20STIR%20Spine%20Images%20Are%20Superior%20in%20Image%20Quality%20and%20Diagnostically%20Equivalent%20to%20Conventional%20STIR:%20A%20Multicenter,%20Multireader%20Trial&rft.jtitle=American%20journal%20of%20neuroradiology%20:%20AJNR&rft.au=Tanenbaum,%20L%20N&rft.date=2023-08&rft.volume=44&rft.issue=8&rft.spage=987&rft.epage=993&rft.pages=987-993&rft.issn=0195-6108&rft.eissn=1936-959X&rft_id=info:doi/10.3174/ajnr.A7920&rft_dat=%3Cproquest_pubme%3E2835273620%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835273620&rft_id=info:pmid/37414452&rfr_iscdi=true