Comparing PVP and Polymeric Micellar Formulations of a PEGylated Photosensitizing Phthalocyanine by NMR and Optical Techniques
Phthalocyanines are ideal candidates as photosensitizers for photodynamic therapy (PDT) of cancer due to their favorable chemical and photophysical properties. However, their tendency to form aggregates in water reduces PDT efficacy and poses challenges in obtaining efficient forms of phthalocyanine...
Gespeichert in:
Veröffentlicht in: | Molecular pharmaceutics 2023-08, Vol.20 (8), p.4165-4183 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4183 |
---|---|
container_issue | 8 |
container_start_page | 4165 |
container_title | Molecular pharmaceutics |
container_volume | 20 |
creator | Gergely, Lea P. Yüceel, Çiğdem İşci, Ümit Spadin, Florentin S. Schneider, Lukas Spingler, Bernhard Frenz, Martin Dumoulin, Fabienne Vermathen, Martina |
description | Phthalocyanines are ideal candidates as photosensitizers for photodynamic therapy (PDT) of cancer due to their favorable chemical and photophysical properties. However, their tendency to form aggregates in water reduces PDT efficacy and poses challenges in obtaining efficient forms of phthalocyanines for therapeutic applications. In the current work, polyvinylpyrrolidone (PVP) and micellar formulations were compared for encapsulating and monomerizing a water-soluble zinc phthalocyanine bearing four non-peripheral triethylene glycol chains (Pc1). 1H NMR spectroscopy combined with UV–vis absorption and fluorescence spectroscopy revealed that Pc1 exists as a mixture of regioisomers in monomeric form in dimethyl sulfoxide but forms dimers in an aqueous buffer. PVP, polyethylene glycol castor oil (Kolliphor RH40), and three different triblock copolymers with varying proportions of polyethylene and polypropylene glycol units (termed P188, P84, and F127) were tested as micellar carriers for Pc1. 1H NMR chemical shift analysis, diffusion-ordered spectroscopy, and 2D nuclear Overhauser enhancement spectroscopy was applied to monitor the encapsulation and localization of Pc1 at the polymer interface. Kolliphor RH40 and F127 micelles exhibited the highest affinity for encapsulating Pc1 in the micellar core and resulted in intense Pc1 fluorescence emission as well as efficient singlet oxygen formation along with PVP. Among the triblock copolymers, efficiency in binding and dimer dissolution decreased in the order F127 > P84 > P188. PVP was a strong binder for Pc1. However, Pc1 molecules are rather surface-attached and exist as monomer and dimer mixtures. The results demonstrate that NMR combined with optical spectroscopy offer powerful tools to assess parameters like drug binding, localization sites, and dynamic properties that play key roles in achieving high host–guest compatibility. With the corresponding adjustments, polymeric micelles can offer simple and easily accessible drug delivery systems optimizing phthalocyanines’ properties as efficient photosensitizers. |
doi_str_mv | 10.1021/acs.molpharmaceut.3c00306 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10410667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2842454468</sourcerecordid><originalsourceid>FETCH-LOGICAL-a470t-f528116d8466e40b10b670c21f873f990c425456228f7e2126561d5d384ba4bf3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS1ERV_8BWR2bGbwK06yQmjUlkotHVWFreU4TuPKsYPtVAoLfjueByO668pX9rmf7z0HgI8YLTEi-LNUcTl4O_YyDFLpKS2pQogi_gac4ILRRUVr8vZQV-wYnMb4hBBhBaHvwDEtWU0J5Sfgz8oPowzGPcL1zzWUroVrb-dBB6PgrVHaWhngpQ_DZGUy3kXoOyjh-uJqzhc6y3uffNQummR-bzl96qX1apbOOA2bGX6_vd-S78ZklLTwQavemV-TjufgqJM26vf78wz8uLx4WH1b3NxdXa--3iwkK1FadAWpMOZtxTjXDDUYNbxEiuCuKmlX10gxUrCCE1J1pSaY8ILjtmjz6o1kTUfPwJcdd5yaQbdKuxSkFWMwgwyz8NKIly_O9OLRPwuMGEacl5nwaU8IfjN5EoOJW3uc9lMUpGLZXcZ4laX1TqqCjzHo7vAPRmIToMgBihcBin2AuffD_4MeOv8llgXFTrBhPPkpuOzbK8B_AcTusSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842454468</pqid></control><display><type>article</type><title>Comparing PVP and Polymeric Micellar Formulations of a PEGylated Photosensitizing Phthalocyanine by NMR and Optical Techniques</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Gergely, Lea P. ; Yüceel, Çiğdem ; İşci, Ümit ; Spadin, Florentin S. ; Schneider, Lukas ; Spingler, Bernhard ; Frenz, Martin ; Dumoulin, Fabienne ; Vermathen, Martina</creator><creatorcontrib>Gergely, Lea P. ; Yüceel, Çiğdem ; İşci, Ümit ; Spadin, Florentin S. ; Schneider, Lukas ; Spingler, Bernhard ; Frenz, Martin ; Dumoulin, Fabienne ; Vermathen, Martina</creatorcontrib><description>Phthalocyanines are ideal candidates as photosensitizers for photodynamic therapy (PDT) of cancer due to their favorable chemical and photophysical properties. However, their tendency to form aggregates in water reduces PDT efficacy and poses challenges in obtaining efficient forms of phthalocyanines for therapeutic applications. In the current work, polyvinylpyrrolidone (PVP) and micellar formulations were compared for encapsulating and monomerizing a water-soluble zinc phthalocyanine bearing four non-peripheral triethylene glycol chains (Pc1). 1H NMR spectroscopy combined with UV–vis absorption and fluorescence spectroscopy revealed that Pc1 exists as a mixture of regioisomers in monomeric form in dimethyl sulfoxide but forms dimers in an aqueous buffer. PVP, polyethylene glycol castor oil (Kolliphor RH40), and three different triblock copolymers with varying proportions of polyethylene and polypropylene glycol units (termed P188, P84, and F127) were tested as micellar carriers for Pc1. 1H NMR chemical shift analysis, diffusion-ordered spectroscopy, and 2D nuclear Overhauser enhancement spectroscopy was applied to monitor the encapsulation and localization of Pc1 at the polymer interface. Kolliphor RH40 and F127 micelles exhibited the highest affinity for encapsulating Pc1 in the micellar core and resulted in intense Pc1 fluorescence emission as well as efficient singlet oxygen formation along with PVP. Among the triblock copolymers, efficiency in binding and dimer dissolution decreased in the order F127 > P84 > P188. PVP was a strong binder for Pc1. However, Pc1 molecules are rather surface-attached and exist as monomer and dimer mixtures. The results demonstrate that NMR combined with optical spectroscopy offer powerful tools to assess parameters like drug binding, localization sites, and dynamic properties that play key roles in achieving high host–guest compatibility. With the corresponding adjustments, polymeric micelles can offer simple and easily accessible drug delivery systems optimizing phthalocyanines’ properties as efficient photosensitizers.</description><identifier>ISSN: 1543-8384</identifier><identifier>EISSN: 1543-8392</identifier><identifier>DOI: 10.1021/acs.molpharmaceut.3c00306</identifier><identifier>PMID: 37493236</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Magnetic Resonance Spectroscopy ; Micelles ; Photochemotherapy ; Photosensitizing Agents - chemistry ; Polyethylene Glycols - chemistry ; Polymers ; Povidone - chemistry ; Water</subject><ispartof>Molecular pharmaceutics, 2023-08, Vol.20 (8), p.4165-4183</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a470t-f528116d8466e40b10b670c21f873f990c425456228f7e2126561d5d384ba4bf3</citedby><cites>FETCH-LOGICAL-a470t-f528116d8466e40b10b670c21f873f990c425456228f7e2126561d5d384ba4bf3</cites><orcidid>0000-0003-0052-4560 ; 0000-0002-0796-1643 ; 0000-0003-3402-2016 ; 0000-0002-0388-8338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.molpharmaceut.3c00306$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.molpharmaceut.3c00306$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37493236$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gergely, Lea P.</creatorcontrib><creatorcontrib>Yüceel, Çiğdem</creatorcontrib><creatorcontrib>İşci, Ümit</creatorcontrib><creatorcontrib>Spadin, Florentin S.</creatorcontrib><creatorcontrib>Schneider, Lukas</creatorcontrib><creatorcontrib>Spingler, Bernhard</creatorcontrib><creatorcontrib>Frenz, Martin</creatorcontrib><creatorcontrib>Dumoulin, Fabienne</creatorcontrib><creatorcontrib>Vermathen, Martina</creatorcontrib><title>Comparing PVP and Polymeric Micellar Formulations of a PEGylated Photosensitizing Phthalocyanine by NMR and Optical Techniques</title><title>Molecular pharmaceutics</title><addtitle>Mol. Pharmaceutics</addtitle><description>Phthalocyanines are ideal candidates as photosensitizers for photodynamic therapy (PDT) of cancer due to their favorable chemical and photophysical properties. However, their tendency to form aggregates in water reduces PDT efficacy and poses challenges in obtaining efficient forms of phthalocyanines for therapeutic applications. In the current work, polyvinylpyrrolidone (PVP) and micellar formulations were compared for encapsulating and monomerizing a water-soluble zinc phthalocyanine bearing four non-peripheral triethylene glycol chains (Pc1). 1H NMR spectroscopy combined with UV–vis absorption and fluorescence spectroscopy revealed that Pc1 exists as a mixture of regioisomers in monomeric form in dimethyl sulfoxide but forms dimers in an aqueous buffer. PVP, polyethylene glycol castor oil (Kolliphor RH40), and three different triblock copolymers with varying proportions of polyethylene and polypropylene glycol units (termed P188, P84, and F127) were tested as micellar carriers for Pc1. 1H NMR chemical shift analysis, diffusion-ordered spectroscopy, and 2D nuclear Overhauser enhancement spectroscopy was applied to monitor the encapsulation and localization of Pc1 at the polymer interface. Kolliphor RH40 and F127 micelles exhibited the highest affinity for encapsulating Pc1 in the micellar core and resulted in intense Pc1 fluorescence emission as well as efficient singlet oxygen formation along with PVP. Among the triblock copolymers, efficiency in binding and dimer dissolution decreased in the order F127 > P84 > P188. PVP was a strong binder for Pc1. However, Pc1 molecules are rather surface-attached and exist as monomer and dimer mixtures. The results demonstrate that NMR combined with optical spectroscopy offer powerful tools to assess parameters like drug binding, localization sites, and dynamic properties that play key roles in achieving high host–guest compatibility. With the corresponding adjustments, polymeric micelles can offer simple and easily accessible drug delivery systems optimizing phthalocyanines’ properties as efficient photosensitizers.</description><subject>Magnetic Resonance Spectroscopy</subject><subject>Micelles</subject><subject>Photochemotherapy</subject><subject>Photosensitizing Agents - chemistry</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers</subject><subject>Povidone - chemistry</subject><subject>Water</subject><issn>1543-8384</issn><issn>1543-8392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAUhS1ERV_8BWR2bGbwK06yQmjUlkotHVWFreU4TuPKsYPtVAoLfjueByO668pX9rmf7z0HgI8YLTEi-LNUcTl4O_YyDFLpKS2pQogi_gac4ILRRUVr8vZQV-wYnMb4hBBhBaHvwDEtWU0J5Sfgz8oPowzGPcL1zzWUroVrb-dBB6PgrVHaWhngpQ_DZGUy3kXoOyjh-uJqzhc6y3uffNQummR-bzl96qX1apbOOA2bGX6_vd-S78ZklLTwQavemV-TjufgqJM26vf78wz8uLx4WH1b3NxdXa--3iwkK1FadAWpMOZtxTjXDDUYNbxEiuCuKmlX10gxUrCCE1J1pSaY8ILjtmjz6o1kTUfPwJcdd5yaQbdKuxSkFWMwgwyz8NKIly_O9OLRPwuMGEacl5nwaU8IfjN5EoOJW3uc9lMUpGLZXcZ4laX1TqqCjzHo7vAPRmIToMgBihcBin2AuffD_4MeOv8llgXFTrBhPPkpuOzbK8B_AcTusSw</recordid><startdate>20230807</startdate><enddate>20230807</enddate><creator>Gergely, Lea P.</creator><creator>Yüceel, Çiğdem</creator><creator>İşci, Ümit</creator><creator>Spadin, Florentin S.</creator><creator>Schneider, Lukas</creator><creator>Spingler, Bernhard</creator><creator>Frenz, Martin</creator><creator>Dumoulin, Fabienne</creator><creator>Vermathen, Martina</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0052-4560</orcidid><orcidid>https://orcid.org/0000-0002-0796-1643</orcidid><orcidid>https://orcid.org/0000-0003-3402-2016</orcidid><orcidid>https://orcid.org/0000-0002-0388-8338</orcidid></search><sort><creationdate>20230807</creationdate><title>Comparing PVP and Polymeric Micellar Formulations of a PEGylated Photosensitizing Phthalocyanine by NMR and Optical Techniques</title><author>Gergely, Lea P. ; Yüceel, Çiğdem ; İşci, Ümit ; Spadin, Florentin S. ; Schneider, Lukas ; Spingler, Bernhard ; Frenz, Martin ; Dumoulin, Fabienne ; Vermathen, Martina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a470t-f528116d8466e40b10b670c21f873f990c425456228f7e2126561d5d384ba4bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Magnetic Resonance Spectroscopy</topic><topic>Micelles</topic><topic>Photochemotherapy</topic><topic>Photosensitizing Agents - chemistry</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers</topic><topic>Povidone - chemistry</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gergely, Lea P.</creatorcontrib><creatorcontrib>Yüceel, Çiğdem</creatorcontrib><creatorcontrib>İşci, Ümit</creatorcontrib><creatorcontrib>Spadin, Florentin S.</creatorcontrib><creatorcontrib>Schneider, Lukas</creatorcontrib><creatorcontrib>Spingler, Bernhard</creatorcontrib><creatorcontrib>Frenz, Martin</creatorcontrib><creatorcontrib>Dumoulin, Fabienne</creatorcontrib><creatorcontrib>Vermathen, Martina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gergely, Lea P.</au><au>Yüceel, Çiğdem</au><au>İşci, Ümit</au><au>Spadin, Florentin S.</au><au>Schneider, Lukas</au><au>Spingler, Bernhard</au><au>Frenz, Martin</au><au>Dumoulin, Fabienne</au><au>Vermathen, Martina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing PVP and Polymeric Micellar Formulations of a PEGylated Photosensitizing Phthalocyanine by NMR and Optical Techniques</atitle><jtitle>Molecular pharmaceutics</jtitle><addtitle>Mol. Pharmaceutics</addtitle><date>2023-08-07</date><risdate>2023</risdate><volume>20</volume><issue>8</issue><spage>4165</spage><epage>4183</epage><pages>4165-4183</pages><issn>1543-8384</issn><eissn>1543-8392</eissn><abstract>Phthalocyanines are ideal candidates as photosensitizers for photodynamic therapy (PDT) of cancer due to their favorable chemical and photophysical properties. However, their tendency to form aggregates in water reduces PDT efficacy and poses challenges in obtaining efficient forms of phthalocyanines for therapeutic applications. In the current work, polyvinylpyrrolidone (PVP) and micellar formulations were compared for encapsulating and monomerizing a water-soluble zinc phthalocyanine bearing four non-peripheral triethylene glycol chains (Pc1). 1H NMR spectroscopy combined with UV–vis absorption and fluorescence spectroscopy revealed that Pc1 exists as a mixture of regioisomers in monomeric form in dimethyl sulfoxide but forms dimers in an aqueous buffer. PVP, polyethylene glycol castor oil (Kolliphor RH40), and three different triblock copolymers with varying proportions of polyethylene and polypropylene glycol units (termed P188, P84, and F127) were tested as micellar carriers for Pc1. 1H NMR chemical shift analysis, diffusion-ordered spectroscopy, and 2D nuclear Overhauser enhancement spectroscopy was applied to monitor the encapsulation and localization of Pc1 at the polymer interface. Kolliphor RH40 and F127 micelles exhibited the highest affinity for encapsulating Pc1 in the micellar core and resulted in intense Pc1 fluorescence emission as well as efficient singlet oxygen formation along with PVP. Among the triblock copolymers, efficiency in binding and dimer dissolution decreased in the order F127 > P84 > P188. PVP was a strong binder for Pc1. However, Pc1 molecules are rather surface-attached and exist as monomer and dimer mixtures. The results demonstrate that NMR combined with optical spectroscopy offer powerful tools to assess parameters like drug binding, localization sites, and dynamic properties that play key roles in achieving high host–guest compatibility. With the corresponding adjustments, polymeric micelles can offer simple and easily accessible drug delivery systems optimizing phthalocyanines’ properties as efficient photosensitizers.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37493236</pmid><doi>10.1021/acs.molpharmaceut.3c00306</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0052-4560</orcidid><orcidid>https://orcid.org/0000-0002-0796-1643</orcidid><orcidid>https://orcid.org/0000-0003-3402-2016</orcidid><orcidid>https://orcid.org/0000-0002-0388-8338</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1543-8384 |
ispartof | Molecular pharmaceutics, 2023-08, Vol.20 (8), p.4165-4183 |
issn | 1543-8384 1543-8392 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10410667 |
source | MEDLINE; American Chemical Society Journals |
subjects | Magnetic Resonance Spectroscopy Micelles Photochemotherapy Photosensitizing Agents - chemistry Polyethylene Glycols - chemistry Polymers Povidone - chemistry Water |
title | Comparing PVP and Polymeric Micellar Formulations of a PEGylated Photosensitizing Phthalocyanine by NMR and Optical Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20PVP%20and%20Polymeric%20Micellar%20Formulations%20of%20a%20PEGylated%20Photosensitizing%20Phthalocyanine%20by%20NMR%20and%20Optical%20Techniques&rft.jtitle=Molecular%20pharmaceutics&rft.au=Gergely,%20Lea%20P.&rft.date=2023-08-07&rft.volume=20&rft.issue=8&rft.spage=4165&rft.epage=4183&rft.pages=4165-4183&rft.issn=1543-8384&rft.eissn=1543-8392&rft_id=info:doi/10.1021/acs.molpharmaceut.3c00306&rft_dat=%3Cproquest_pubme%3E2842454468%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842454468&rft_id=info:pmid/37493236&rfr_iscdi=true |