Chemoenzymatic Synthesis of Tenofovir

We report on novel chemoenzymatic routes toward tenofovir using low-cost starting materials and commercial or homemade enzyme preparations as biocatalysts. The biocatalytic key step was accomplished either via stereoselective reduction using an alcohol dehydrogenase or via kinetic resolution using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2023-08, Vol.88 (15), p.11045-11055
Hauptverfasser: Zdun, Beata, Reiter, Tamara, Kroutil, Wolfgang, Borowiecki, Paweł
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11055
container_issue 15
container_start_page 11045
container_title Journal of organic chemistry
container_volume 88
creator Zdun, Beata
Reiter, Tamara
Kroutil, Wolfgang
Borowiecki, Paweł
description We report on novel chemoenzymatic routes toward tenofovir using low-cost starting materials and commercial or homemade enzyme preparations as biocatalysts. The biocatalytic key step was accomplished either via stereoselective reduction using an alcohol dehydrogenase or via kinetic resolution using a lipase. By employing a suspension of immobilized lipase from Burkholderia cepacia (Amano PS-IM) in a mixture of vinyl acetate and toluene, the desired (R)-ester (99% ee) was obtained on a 500 mg scale (60 mM) in 47% yield. Alternatively, stereoselective reduction of 1-(6-chloro-9H-purin-9-yl) propan-2-one (84 mg, 100 mM) catalyzed by lyophilized E. coli cells harboring recombinant alcohol dehydrogenase (ADH) from Lactobacillus kefir (E. coli/Lk-ADH Prince) allowed one to reach quantitative conversion, 86% yield and excellent optical purity (>99% ee) of the corresponding (R)-alcohol. The key (R)-intermediate was transformed into tenofovir through “one-pot” aminolysis–hydrolysis of (R)-acetate in NH3-saturated methanol, alkylation of the resulting (R)-alcohol with tosylated diethyl­(hydroxymethyl) phosphonate, and bromotrimethylsilane (TMSBr)-mediated cleavage of the formed phosphonate ester into the free phosphonic acid. The elaborated enzymatic strategy could be applicable in the asymmetric synthesis of tenofovir prodrug derivatives, including 5′-disoproxil fumarate (TDF, Viread) and 5′-alafenamide (TAF, Vemlidy). The molecular basis of the stereoselectivity of the employed ADHs was revealed by molecular docking studies.
doi_str_mv 10.1021/acs.joc.3c01005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10407936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2840249009</sourcerecordid><originalsourceid>FETCH-LOGICAL-a430t-ee3fda759d7f5df0e5924fd73adbd76829790ea2274d30d0540eed3c16f036cf3</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMotlbX7qQbQZBp7-QxcVYixRcUXFjXIU1u7JTOpE5mCvXXG5ladGEIZJHzffdyCDlPYZQCTcfahNHSmxEzkAKIA9JPBYUky4Efkj4ApQmjGeuRkxCWEI8Q4pj0mORZvLRPLicLLD1Wn9tSN4UZvm6rZoGhCEPvhjOsvPOboj4lR06vAp7t3gF5e7ifTZ6S6cvj8-RummjOoEkQmbNaitxKJ6wDFDnlzkqm7dzK7IbmMgfUlEpuGVgQHBAtM2nmgGXGsQG57XrX7bxEa7Bqar1S67oodb1VXhfq709VLNS736gUOMicZbHhatdQ-48WQ6PKIhhcrXSFvg2K3nCgPAfIIzruUFP7EGp0-zkpqG-7KtpV0a7a2Y2Ji9_r7fkfnRG47oAu2dZVtPVv3RfmAYXa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840249009</pqid></control><display><type>article</type><title>Chemoenzymatic Synthesis of Tenofovir</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Zdun, Beata ; Reiter, Tamara ; Kroutil, Wolfgang ; Borowiecki, Paweł</creator><creatorcontrib>Zdun, Beata ; Reiter, Tamara ; Kroutil, Wolfgang ; Borowiecki, Paweł</creatorcontrib><description>We report on novel chemoenzymatic routes toward tenofovir using low-cost starting materials and commercial or homemade enzyme preparations as biocatalysts. The biocatalytic key step was accomplished either via stereoselective reduction using an alcohol dehydrogenase or via kinetic resolution using a lipase. By employing a suspension of immobilized lipase from Burkholderia cepacia (Amano PS-IM) in a mixture of vinyl acetate and toluene, the desired (R)-ester (99% ee) was obtained on a 500 mg scale (60 mM) in 47% yield. Alternatively, stereoselective reduction of 1-(6-chloro-9H-purin-9-yl) propan-2-one (84 mg, 100 mM) catalyzed by lyophilized E. coli cells harboring recombinant alcohol dehydrogenase (ADH) from Lactobacillus kefir (E. coli/Lk-ADH Prince) allowed one to reach quantitative conversion, 86% yield and excellent optical purity (&gt;99% ee) of the corresponding (R)-alcohol. The key (R)-intermediate was transformed into tenofovir through “one-pot” aminolysis–hydrolysis of (R)-acetate in NH3-saturated methanol, alkylation of the resulting (R)-alcohol with tosylated diethyl­(hydroxymethyl) phosphonate, and bromotrimethylsilane (TMSBr)-mediated cleavage of the formed phosphonate ester into the free phosphonic acid. The elaborated enzymatic strategy could be applicable in the asymmetric synthesis of tenofovir prodrug derivatives, including 5′-disoproxil fumarate (TDF, Viread) and 5′-alafenamide (TAF, Vemlidy). The molecular basis of the stereoselectivity of the employed ADHs was revealed by molecular docking studies.</description><identifier>ISSN: 0022-3263</identifier><identifier>EISSN: 1520-6904</identifier><identifier>DOI: 10.1021/acs.joc.3c01005</identifier><identifier>PMID: 37467462</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alanine ; Alcohol Dehydrogenase ; Anti-HIV Agents ; Escherichia coli ; Lipase ; Molecular Docking Simulation ; Organophosphonates ; Tenofovir</subject><ispartof>Journal of organic chemistry, 2023-08, Vol.88 (15), p.11045-11055</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a430t-ee3fda759d7f5df0e5924fd73adbd76829790ea2274d30d0540eed3c16f036cf3</citedby><cites>FETCH-LOGICAL-a430t-ee3fda759d7f5df0e5924fd73adbd76829790ea2274d30d0540eed3c16f036cf3</cites><orcidid>0000-0001-5355-7281 ; 0000-0002-2151-6394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.joc.3c01005$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.joc.3c01005$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37467462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zdun, Beata</creatorcontrib><creatorcontrib>Reiter, Tamara</creatorcontrib><creatorcontrib>Kroutil, Wolfgang</creatorcontrib><creatorcontrib>Borowiecki, Paweł</creatorcontrib><title>Chemoenzymatic Synthesis of Tenofovir</title><title>Journal of organic chemistry</title><addtitle>J. Org. Chem</addtitle><description>We report on novel chemoenzymatic routes toward tenofovir using low-cost starting materials and commercial or homemade enzyme preparations as biocatalysts. The biocatalytic key step was accomplished either via stereoselective reduction using an alcohol dehydrogenase or via kinetic resolution using a lipase. By employing a suspension of immobilized lipase from Burkholderia cepacia (Amano PS-IM) in a mixture of vinyl acetate and toluene, the desired (R)-ester (99% ee) was obtained on a 500 mg scale (60 mM) in 47% yield. Alternatively, stereoselective reduction of 1-(6-chloro-9H-purin-9-yl) propan-2-one (84 mg, 100 mM) catalyzed by lyophilized E. coli cells harboring recombinant alcohol dehydrogenase (ADH) from Lactobacillus kefir (E. coli/Lk-ADH Prince) allowed one to reach quantitative conversion, 86% yield and excellent optical purity (&gt;99% ee) of the corresponding (R)-alcohol. The key (R)-intermediate was transformed into tenofovir through “one-pot” aminolysis–hydrolysis of (R)-acetate in NH3-saturated methanol, alkylation of the resulting (R)-alcohol with tosylated diethyl­(hydroxymethyl) phosphonate, and bromotrimethylsilane (TMSBr)-mediated cleavage of the formed phosphonate ester into the free phosphonic acid. The elaborated enzymatic strategy could be applicable in the asymmetric synthesis of tenofovir prodrug derivatives, including 5′-disoproxil fumarate (TDF, Viread) and 5′-alafenamide (TAF, Vemlidy). The molecular basis of the stereoselectivity of the employed ADHs was revealed by molecular docking studies.</description><subject>Alanine</subject><subject>Alcohol Dehydrogenase</subject><subject>Anti-HIV Agents</subject><subject>Escherichia coli</subject><subject>Lipase</subject><subject>Molecular Docking Simulation</subject><subject>Organophosphonates</subject><subject>Tenofovir</subject><issn>0022-3263</issn><issn>1520-6904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEURoMotlbX7qQbQZBp7-QxcVYixRcUXFjXIU1u7JTOpE5mCvXXG5ladGEIZJHzffdyCDlPYZQCTcfahNHSmxEzkAKIA9JPBYUky4Efkj4ApQmjGeuRkxCWEI8Q4pj0mORZvLRPLicLLD1Wn9tSN4UZvm6rZoGhCEPvhjOsvPOboj4lR06vAp7t3gF5e7ifTZ6S6cvj8-RummjOoEkQmbNaitxKJ6wDFDnlzkqm7dzK7IbmMgfUlEpuGVgQHBAtM2nmgGXGsQG57XrX7bxEa7Bqar1S67oodb1VXhfq709VLNS736gUOMicZbHhatdQ-48WQ6PKIhhcrXSFvg2K3nCgPAfIIzruUFP7EGp0-zkpqG-7KtpV0a7a2Y2Ji9_r7fkfnRG47oAu2dZVtPVv3RfmAYXa</recordid><startdate>20230804</startdate><enddate>20230804</enddate><creator>Zdun, Beata</creator><creator>Reiter, Tamara</creator><creator>Kroutil, Wolfgang</creator><creator>Borowiecki, Paweł</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5355-7281</orcidid><orcidid>https://orcid.org/0000-0002-2151-6394</orcidid></search><sort><creationdate>20230804</creationdate><title>Chemoenzymatic Synthesis of Tenofovir</title><author>Zdun, Beata ; Reiter, Tamara ; Kroutil, Wolfgang ; Borowiecki, Paweł</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a430t-ee3fda759d7f5df0e5924fd73adbd76829790ea2274d30d0540eed3c16f036cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alanine</topic><topic>Alcohol Dehydrogenase</topic><topic>Anti-HIV Agents</topic><topic>Escherichia coli</topic><topic>Lipase</topic><topic>Molecular Docking Simulation</topic><topic>Organophosphonates</topic><topic>Tenofovir</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zdun, Beata</creatorcontrib><creatorcontrib>Reiter, Tamara</creatorcontrib><creatorcontrib>Kroutil, Wolfgang</creatorcontrib><creatorcontrib>Borowiecki, Paweł</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zdun, Beata</au><au>Reiter, Tamara</au><au>Kroutil, Wolfgang</au><au>Borowiecki, Paweł</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemoenzymatic Synthesis of Tenofovir</atitle><jtitle>Journal of organic chemistry</jtitle><addtitle>J. Org. Chem</addtitle><date>2023-08-04</date><risdate>2023</risdate><volume>88</volume><issue>15</issue><spage>11045</spage><epage>11055</epage><pages>11045-11055</pages><issn>0022-3263</issn><eissn>1520-6904</eissn><abstract>We report on novel chemoenzymatic routes toward tenofovir using low-cost starting materials and commercial or homemade enzyme preparations as biocatalysts. The biocatalytic key step was accomplished either via stereoselective reduction using an alcohol dehydrogenase or via kinetic resolution using a lipase. By employing a suspension of immobilized lipase from Burkholderia cepacia (Amano PS-IM) in a mixture of vinyl acetate and toluene, the desired (R)-ester (99% ee) was obtained on a 500 mg scale (60 mM) in 47% yield. Alternatively, stereoselective reduction of 1-(6-chloro-9H-purin-9-yl) propan-2-one (84 mg, 100 mM) catalyzed by lyophilized E. coli cells harboring recombinant alcohol dehydrogenase (ADH) from Lactobacillus kefir (E. coli/Lk-ADH Prince) allowed one to reach quantitative conversion, 86% yield and excellent optical purity (&gt;99% ee) of the corresponding (R)-alcohol. The key (R)-intermediate was transformed into tenofovir through “one-pot” aminolysis–hydrolysis of (R)-acetate in NH3-saturated methanol, alkylation of the resulting (R)-alcohol with tosylated diethyl­(hydroxymethyl) phosphonate, and bromotrimethylsilane (TMSBr)-mediated cleavage of the formed phosphonate ester into the free phosphonic acid. The elaborated enzymatic strategy could be applicable in the asymmetric synthesis of tenofovir prodrug derivatives, including 5′-disoproxil fumarate (TDF, Viread) and 5′-alafenamide (TAF, Vemlidy). The molecular basis of the stereoselectivity of the employed ADHs was revealed by molecular docking studies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37467462</pmid><doi>10.1021/acs.joc.3c01005</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5355-7281</orcidid><orcidid>https://orcid.org/0000-0002-2151-6394</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3263
ispartof Journal of organic chemistry, 2023-08, Vol.88 (15), p.11045-11055
issn 0022-3263
1520-6904
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10407936
source MEDLINE; American Chemical Society Journals
subjects Alanine
Alcohol Dehydrogenase
Anti-HIV Agents
Escherichia coli
Lipase
Molecular Docking Simulation
Organophosphonates
Tenofovir
title Chemoenzymatic Synthesis of Tenofovir
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemoenzymatic%20Synthesis%20of%20Tenofovir&rft.jtitle=Journal%20of%20organic%20chemistry&rft.au=Zdun,%20Beata&rft.date=2023-08-04&rft.volume=88&rft.issue=15&rft.spage=11045&rft.epage=11055&rft.pages=11045-11055&rft.issn=0022-3263&rft.eissn=1520-6904&rft_id=info:doi/10.1021/acs.joc.3c01005&rft_dat=%3Cproquest_pubme%3E2840249009%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840249009&rft_id=info:pmid/37467462&rfr_iscdi=true