Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions
The mitochondrial permeability transition (mPT) describes a Ca 2+ -dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability...
Gespeichert in:
Veröffentlicht in: | Cell death and differentiation 2023-08, Vol.30 (8), p.1869-1885 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1885 |
---|---|
container_issue | 8 |
container_start_page | 1869 |
container_title | Cell death and differentiation |
container_volume | 30 |
creator | Bernardi, Paolo Gerle, Christoph Halestrap, Andrew P. Jonas, Elizabeth A. Karch, Jason Mnatsakanyan, Nelli Pavlov, Evgeny Sheu, Shey-Shing Soukas, Alexander A. |
description | The mitochondrial permeability transition (mPT) describes a Ca
2+
-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca
2+
efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F
1
F
O
(F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP. |
doi_str_mv | 10.1038/s41418-023-01187-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10406888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847161542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-74f11456f08e38b8f7a2ddb5c67df9574ab6e76e4b85336a76cd236cd39f60ff3</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEoqXwAiyQJTYsTsCOHdthg1DFpVIlNrC2HHvc4yqxD7ZzpD4I74vTlHJZsPFF883_z-hvmucEvyaYyjeZEUZkizvaYkKkaPGD5pQwwdueYfqwvmmP2wEzcdI8yfkaY8zFwB83J1QwjjkXp82PCwuh-HKzQ7mkxZQlwQ7pYJFbgik-BhQdKntAsy_R7GOwyesJHSDNoEc_1VZUkg7Z38KHmOAtMjGUFI-Qsoe8W78ZQl7qM4Gpfkjbow5mrW1Wqy2yvlZXlfy0eeT0lOHZ3X3WfPv44ev55_byy6eL8_eXrWGiL61gjhDWc4clUDlKJ3Rn7dgbLqwbesH0yEFwYKPsKeVacGM7Wg86OI6do2fNu033sIwz2HW0pCd1SH7W6UZF7dXfleD36ioeFcEMcyllVXh1p5Di9wVyUbPPBqZJB4hLVp2kQ8dkx1lFX_6DXsclhbpfpZggnPSsq1S3USbFnBO4-2kIVmvsaotd1djVbewK16YXf-5x3_Ir5wrQDci1FK4g_fb-j-xPUS69Eg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847161542</pqid></control><display><type>article</type><title>Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><creator>Bernardi, Paolo ; Gerle, Christoph ; Halestrap, Andrew P. ; Jonas, Elizabeth A. ; Karch, Jason ; Mnatsakanyan, Nelli ; Pavlov, Evgeny ; Sheu, Shey-Shing ; Soukas, Alexander A.</creator><creatorcontrib>Bernardi, Paolo ; Gerle, Christoph ; Halestrap, Andrew P. ; Jonas, Elizabeth A. ; Karch, Jason ; Mnatsakanyan, Nelli ; Pavlov, Evgeny ; Sheu, Shey-Shing ; Soukas, Alexander A.</creatorcontrib><description>The mitochondrial permeability transition (mPT) describes a Ca
2+
-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca
2+
efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F
1
F
O
(F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/s41418-023-01187-0</identifier><identifier>PMID: 37460667</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/80 ; 692/699 ; Apoptosis ; ATP synthase ; Biochemistry ; Bioenergetics ; Biomedical and Life Sciences ; Calcium (mitochondrial) ; Calcium efflux ; Calcium permeability ; Cell Biology ; Cell Cycle Analysis ; Cell death ; Consensus ; Life Sciences ; Membrane permeability ; Mitochondria - metabolism ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial Membranes - metabolism ; Mitochondrial permeability transition pore ; Mitochondrial Permeability Transition Pore - analysis ; Mitochondrial Permeability Transition Pore - metabolism ; Monomers ; Permeability ; Review ; Review Article ; Stem Cells ; Structure-function relationships ; Translocase</subject><ispartof>Cell death and differentiation, 2023-08, Vol.30 (8), p.1869-1885</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-74f11456f08e38b8f7a2ddb5c67df9574ab6e76e4b85336a76cd236cd39f60ff3</citedby><cites>FETCH-LOGICAL-c475t-74f11456f08e38b8f7a2ddb5c67df9574ab6e76e4b85336a76cd236cd39f60ff3</cites><orcidid>0000-0002-7265-2804 ; 0000-0001-9187-3736 ; 0000-0003-3838-3601 ; 0000-0002-1624-5999 ; 0000-0001-5374-2778 ; 0000-0001-5363-7409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406888/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406888/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,41469,42538,51300,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37460667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernardi, Paolo</creatorcontrib><creatorcontrib>Gerle, Christoph</creatorcontrib><creatorcontrib>Halestrap, Andrew P.</creatorcontrib><creatorcontrib>Jonas, Elizabeth A.</creatorcontrib><creatorcontrib>Karch, Jason</creatorcontrib><creatorcontrib>Mnatsakanyan, Nelli</creatorcontrib><creatorcontrib>Pavlov, Evgeny</creatorcontrib><creatorcontrib>Sheu, Shey-Shing</creatorcontrib><creatorcontrib>Soukas, Alexander A.</creatorcontrib><title>Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>The mitochondrial permeability transition (mPT) describes a Ca
2+
-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca
2+
efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F
1
F
O
(F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.</description><subject>631/80</subject><subject>692/699</subject><subject>Apoptosis</subject><subject>ATP synthase</subject><subject>Biochemistry</subject><subject>Bioenergetics</subject><subject>Biomedical and Life Sciences</subject><subject>Calcium (mitochondrial)</subject><subject>Calcium efflux</subject><subject>Calcium permeability</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>Consensus</subject><subject>Life Sciences</subject><subject>Membrane permeability</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>Mitochondrial permeability transition pore</subject><subject>Mitochondrial Permeability Transition Pore - analysis</subject><subject>Mitochondrial Permeability Transition Pore - metabolism</subject><subject>Monomers</subject><subject>Permeability</subject><subject>Review</subject><subject>Review Article</subject><subject>Stem Cells</subject><subject>Structure-function relationships</subject><subject>Translocase</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctu1TAQhiMEoqXwAiyQJTYsTsCOHdthg1DFpVIlNrC2HHvc4yqxD7ZzpD4I74vTlHJZsPFF883_z-hvmucEvyaYyjeZEUZkizvaYkKkaPGD5pQwwdueYfqwvmmP2wEzcdI8yfkaY8zFwB83J1QwjjkXp82PCwuh-HKzQ7mkxZQlwQ7pYJFbgik-BhQdKntAsy_R7GOwyesJHSDNoEc_1VZUkg7Z38KHmOAtMjGUFI-Qsoe8W78ZQl7qM4Gpfkjbow5mrW1Wqy2yvlZXlfy0eeT0lOHZ3X3WfPv44ev55_byy6eL8_eXrWGiL61gjhDWc4clUDlKJ3Rn7dgbLqwbesH0yEFwYKPsKeVacGM7Wg86OI6do2fNu033sIwz2HW0pCd1SH7W6UZF7dXfleD36ioeFcEMcyllVXh1p5Di9wVyUbPPBqZJB4hLVp2kQ8dkx1lFX_6DXsclhbpfpZggnPSsq1S3USbFnBO4-2kIVmvsaotd1djVbewK16YXf-5x3_Ir5wrQDci1FK4g_fb-j-xPUS69Eg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Bernardi, Paolo</creator><creator>Gerle, Christoph</creator><creator>Halestrap, Andrew P.</creator><creator>Jonas, Elizabeth A.</creator><creator>Karch, Jason</creator><creator>Mnatsakanyan, Nelli</creator><creator>Pavlov, Evgeny</creator><creator>Sheu, Shey-Shing</creator><creator>Soukas, Alexander A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7265-2804</orcidid><orcidid>https://orcid.org/0000-0001-9187-3736</orcidid><orcidid>https://orcid.org/0000-0003-3838-3601</orcidid><orcidid>https://orcid.org/0000-0002-1624-5999</orcidid><orcidid>https://orcid.org/0000-0001-5374-2778</orcidid><orcidid>https://orcid.org/0000-0001-5363-7409</orcidid></search><sort><creationdate>20230801</creationdate><title>Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions</title><author>Bernardi, Paolo ; Gerle, Christoph ; Halestrap, Andrew P. ; Jonas, Elizabeth A. ; Karch, Jason ; Mnatsakanyan, Nelli ; Pavlov, Evgeny ; Sheu, Shey-Shing ; Soukas, Alexander A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-74f11456f08e38b8f7a2ddb5c67df9574ab6e76e4b85336a76cd236cd39f60ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/80</topic><topic>692/699</topic><topic>Apoptosis</topic><topic>ATP synthase</topic><topic>Biochemistry</topic><topic>Bioenergetics</topic><topic>Biomedical and Life Sciences</topic><topic>Calcium (mitochondrial)</topic><topic>Calcium efflux</topic><topic>Calcium permeability</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>Consensus</topic><topic>Life Sciences</topic><topic>Membrane permeability</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>Mitochondrial permeability transition pore</topic><topic>Mitochondrial Permeability Transition Pore - analysis</topic><topic>Mitochondrial Permeability Transition Pore - metabolism</topic><topic>Monomers</topic><topic>Permeability</topic><topic>Review</topic><topic>Review Article</topic><topic>Stem Cells</topic><topic>Structure-function relationships</topic><topic>Translocase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernardi, Paolo</creatorcontrib><creatorcontrib>Gerle, Christoph</creatorcontrib><creatorcontrib>Halestrap, Andrew P.</creatorcontrib><creatorcontrib>Jonas, Elizabeth A.</creatorcontrib><creatorcontrib>Karch, Jason</creatorcontrib><creatorcontrib>Mnatsakanyan, Nelli</creatorcontrib><creatorcontrib>Pavlov, Evgeny</creatorcontrib><creatorcontrib>Sheu, Shey-Shing</creatorcontrib><creatorcontrib>Soukas, Alexander A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernardi, Paolo</au><au>Gerle, Christoph</au><au>Halestrap, Andrew P.</au><au>Jonas, Elizabeth A.</au><au>Karch, Jason</au><au>Mnatsakanyan, Nelli</au><au>Pavlov, Evgeny</au><au>Sheu, Shey-Shing</au><au>Soukas, Alexander A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>30</volume><issue>8</issue><spage>1869</spage><epage>1885</epage><pages>1869-1885</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>The mitochondrial permeability transition (mPT) describes a Ca
2+
-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca
2+
efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F
1
F
O
(F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37460667</pmid><doi>10.1038/s41418-023-01187-0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7265-2804</orcidid><orcidid>https://orcid.org/0000-0001-9187-3736</orcidid><orcidid>https://orcid.org/0000-0003-3838-3601</orcidid><orcidid>https://orcid.org/0000-0002-1624-5999</orcidid><orcidid>https://orcid.org/0000-0001-5374-2778</orcidid><orcidid>https://orcid.org/0000-0001-5363-7409</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-9047 |
ispartof | Cell death and differentiation, 2023-08, Vol.30 (8), p.1869-1885 |
issn | 1350-9047 1476-5403 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10406888 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature - Complete Springer Journals; PubMed Central |
subjects | 631/80 692/699 Apoptosis ATP synthase Biochemistry Bioenergetics Biomedical and Life Sciences Calcium (mitochondrial) Calcium efflux Calcium permeability Cell Biology Cell Cycle Analysis Cell death Consensus Life Sciences Membrane permeability Mitochondria - metabolism Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial Membranes - metabolism Mitochondrial permeability transition pore Mitochondrial Permeability Transition Pore - analysis Mitochondrial Permeability Transition Pore - metabolism Monomers Permeability Review Review Article Stem Cells Structure-function relationships Translocase |
title | Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identity,%20structure,%20and%20function%20of%20the%20mitochondrial%20permeability%20transition%20pore:%20controversies,%20consensus,%20recent%20advances,%20and%20future%20directions&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Bernardi,%20Paolo&rft.date=2023-08-01&rft.volume=30&rft.issue=8&rft.spage=1869&rft.epage=1885&rft.pages=1869-1885&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/s41418-023-01187-0&rft_dat=%3Cproquest_pubme%3E2847161542%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847161542&rft_id=info:pmid/37460667&rfr_iscdi=true |