Structural Brain Imaging Predicts Individual-Level Task Activation Maps Using Deep Learning

Accurate individual functional mapping of task activations is a potential tool for biomarker discovery and is critically important for clinical care. While structural imaging does not directly map task activation, we hypothesized that structural imaging contains information that can accurately predi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neuroimaging 2022-04, Vol.1, p.834883-834883
Hauptverfasser: Ellis, David G, Aizenberg, Michele R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 834883
container_issue
container_start_page 834883
container_title Frontiers in neuroimaging
container_volume 1
creator Ellis, David G
Aizenberg, Michele R
description Accurate individual functional mapping of task activations is a potential tool for biomarker discovery and is critically important for clinical care. While structural imaging does not directly map task activation, we hypothesized that structural imaging contains information that can accurately predict variations in task activation between individuals. To this end, we trained a convolutional neural network to use structural imaging (T1-weighted, T2-weighted, and diffusion tensor imaging) to predict 47 different functional MRI task activation volumes across seven task domains. The U-Net model was trained on 591 subjects and then subsequently tested on 122 unrelated subjects. The predicted activation maps correlated more strongly with their actual maps than with the maps of the other test subjects. An ablation study revealed that a model using the shape of the cortex alone or the shape of the subcortical matter alone was sufficient to predict individual-level differences in task activation maps, but a model using the shape of the whole brain resulted in markedly decreased performance. The ablation study also showed that the additional information provided by the T2-weighted and diffusion tensor imaging strengthened the predictions as compared to using the T1-weighted imaging alone. These results indicate that structural imaging contains information that is predictive of inter-subject variability in task activation mapping and that cortical folding patterns, as well as microstructural features, could be a key component to linking brain structure to brain function.
doi_str_mv 10.3389/fnimg.2022.834883
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10406267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848230829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1973-55a46a79cb0a3431ef77c976d12680d0502d4333337aacbf1e2c422aa7f303303</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoWqo_wIvk6GVrvnaTPUn9LlQUrCcPYZrN1uhutia7Bf-9W1tFh8BMyLzvTHgQOqZkxLnKz0rv6sWIEcZGigul-A4aMEV5QmnOd__UB-goxjdCCFNSEEX20QGXaZpSLgbo5akNnWm7ABW-COA8ntSwcH6BH4MtnGkjnvjCrVzRQZVM7cpWeAbxHY9N61bQusbje1hG_BzXoitrl3hqIfj-doj2SqiiPdrmIXq-uZ5d3iXTh9vJ5XiaGJpLnqQpiAxkbuYEuODUllKaXGYFZZkiBUkJKwRfhwQw85JaZgRjALLkhPdniM43vstuXtvCWN_239HL4GoIn7oBp_-_ePeqF81KUyJIxjLZO5xuHULz0dnY6tpFY6sKvG26qJkSinGiWN630k2rCU2MwZa_cyjRazD6G4xeg9EbML3m5O-Cv4ofDPwLermKhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848230829</pqid></control><display><type>article</type><title>Structural Brain Imaging Predicts Individual-Level Task Activation Maps Using Deep Learning</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Ellis, David G ; Aizenberg, Michele R</creator><creatorcontrib>Ellis, David G ; Aizenberg, Michele R</creatorcontrib><description>Accurate individual functional mapping of task activations is a potential tool for biomarker discovery and is critically important for clinical care. While structural imaging does not directly map task activation, we hypothesized that structural imaging contains information that can accurately predict variations in task activation between individuals. To this end, we trained a convolutional neural network to use structural imaging (T1-weighted, T2-weighted, and diffusion tensor imaging) to predict 47 different functional MRI task activation volumes across seven task domains. The U-Net model was trained on 591 subjects and then subsequently tested on 122 unrelated subjects. The predicted activation maps correlated more strongly with their actual maps than with the maps of the other test subjects. An ablation study revealed that a model using the shape of the cortex alone or the shape of the subcortical matter alone was sufficient to predict individual-level differences in task activation maps, but a model using the shape of the whole brain resulted in markedly decreased performance. The ablation study also showed that the additional information provided by the T2-weighted and diffusion tensor imaging strengthened the predictions as compared to using the T1-weighted imaging alone. These results indicate that structural imaging contains information that is predictive of inter-subject variability in task activation mapping and that cortical folding patterns, as well as microstructural features, could be a key component to linking brain structure to brain function.</description><identifier>ISSN: 2813-1193</identifier><identifier>EISSN: 2813-1193</identifier><identifier>DOI: 10.3389/fnimg.2022.834883</identifier><identifier>PMID: 37555134</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Neuroimaging</subject><ispartof>Frontiers in neuroimaging, 2022-04, Vol.1, p.834883-834883</ispartof><rights>Copyright © 2022 Ellis and Aizenberg.</rights><rights>Copyright © 2022 Ellis and Aizenberg. 2022 Ellis and Aizenberg</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1973-55a46a79cb0a3431ef77c976d12680d0502d4333337aacbf1e2c422aa7f303303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406267/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406267/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37555134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ellis, David G</creatorcontrib><creatorcontrib>Aizenberg, Michele R</creatorcontrib><title>Structural Brain Imaging Predicts Individual-Level Task Activation Maps Using Deep Learning</title><title>Frontiers in neuroimaging</title><addtitle>Front Neuroimaging</addtitle><description>Accurate individual functional mapping of task activations is a potential tool for biomarker discovery and is critically important for clinical care. While structural imaging does not directly map task activation, we hypothesized that structural imaging contains information that can accurately predict variations in task activation between individuals. To this end, we trained a convolutional neural network to use structural imaging (T1-weighted, T2-weighted, and diffusion tensor imaging) to predict 47 different functional MRI task activation volumes across seven task domains. The U-Net model was trained on 591 subjects and then subsequently tested on 122 unrelated subjects. The predicted activation maps correlated more strongly with their actual maps than with the maps of the other test subjects. An ablation study revealed that a model using the shape of the cortex alone or the shape of the subcortical matter alone was sufficient to predict individual-level differences in task activation maps, but a model using the shape of the whole brain resulted in markedly decreased performance. The ablation study also showed that the additional information provided by the T2-weighted and diffusion tensor imaging strengthened the predictions as compared to using the T1-weighted imaging alone. These results indicate that structural imaging contains information that is predictive of inter-subject variability in task activation mapping and that cortical folding patterns, as well as microstructural features, could be a key component to linking brain structure to brain function.</description><subject>Neuroimaging</subject><issn>2813-1193</issn><issn>2813-1193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkU1LAzEQhoMoWqo_wIvk6GVrvnaTPUn9LlQUrCcPYZrN1uhutia7Bf-9W1tFh8BMyLzvTHgQOqZkxLnKz0rv6sWIEcZGigul-A4aMEV5QmnOd__UB-goxjdCCFNSEEX20QGXaZpSLgbo5akNnWm7ABW-COA8ntSwcH6BH4MtnGkjnvjCrVzRQZVM7cpWeAbxHY9N61bQusbje1hG_BzXoitrl3hqIfj-doj2SqiiPdrmIXq-uZ5d3iXTh9vJ5XiaGJpLnqQpiAxkbuYEuODUllKaXGYFZZkiBUkJKwRfhwQw85JaZgRjALLkhPdniM43vstuXtvCWN_239HL4GoIn7oBp_-_ePeqF81KUyJIxjLZO5xuHULz0dnY6tpFY6sKvG26qJkSinGiWN630k2rCU2MwZa_cyjRazD6G4xeg9EbML3m5O-Cv4ofDPwLermKhA</recordid><startdate>20220418</startdate><enddate>20220418</enddate><creator>Ellis, David G</creator><creator>Aizenberg, Michele R</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220418</creationdate><title>Structural Brain Imaging Predicts Individual-Level Task Activation Maps Using Deep Learning</title><author>Ellis, David G ; Aizenberg, Michele R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1973-55a46a79cb0a3431ef77c976d12680d0502d4333337aacbf1e2c422aa7f303303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Neuroimaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellis, David G</creatorcontrib><creatorcontrib>Aizenberg, Michele R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Frontiers in neuroimaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellis, David G</au><au>Aizenberg, Michele R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Brain Imaging Predicts Individual-Level Task Activation Maps Using Deep Learning</atitle><jtitle>Frontiers in neuroimaging</jtitle><addtitle>Front Neuroimaging</addtitle><date>2022-04-18</date><risdate>2022</risdate><volume>1</volume><spage>834883</spage><epage>834883</epage><pages>834883-834883</pages><issn>2813-1193</issn><eissn>2813-1193</eissn><abstract>Accurate individual functional mapping of task activations is a potential tool for biomarker discovery and is critically important for clinical care. While structural imaging does not directly map task activation, we hypothesized that structural imaging contains information that can accurately predict variations in task activation between individuals. To this end, we trained a convolutional neural network to use structural imaging (T1-weighted, T2-weighted, and diffusion tensor imaging) to predict 47 different functional MRI task activation volumes across seven task domains. The U-Net model was trained on 591 subjects and then subsequently tested on 122 unrelated subjects. The predicted activation maps correlated more strongly with their actual maps than with the maps of the other test subjects. An ablation study revealed that a model using the shape of the cortex alone or the shape of the subcortical matter alone was sufficient to predict individual-level differences in task activation maps, but a model using the shape of the whole brain resulted in markedly decreased performance. The ablation study also showed that the additional information provided by the T2-weighted and diffusion tensor imaging strengthened the predictions as compared to using the T1-weighted imaging alone. These results indicate that structural imaging contains information that is predictive of inter-subject variability in task activation mapping and that cortical folding patterns, as well as microstructural features, could be a key component to linking brain structure to brain function.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>37555134</pmid><doi>10.3389/fnimg.2022.834883</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2813-1193
ispartof Frontiers in neuroimaging, 2022-04, Vol.1, p.834883-834883
issn 2813-1193
2813-1193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10406267
source DOAJ Directory of Open Access Journals; PubMed Central; PubMed Central Open Access
subjects Neuroimaging
title Structural Brain Imaging Predicts Individual-Level Task Activation Maps Using Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Brain%20Imaging%20Predicts%20Individual-Level%20Task%20Activation%20Maps%20Using%20Deep%20Learning&rft.jtitle=Frontiers%20in%20neuroimaging&rft.au=Ellis,%20David%20G&rft.date=2022-04-18&rft.volume=1&rft.spage=834883&rft.epage=834883&rft.pages=834883-834883&rft.issn=2813-1193&rft.eissn=2813-1193&rft_id=info:doi/10.3389/fnimg.2022.834883&rft_dat=%3Cproquest_pubme%3E2848230829%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848230829&rft_id=info:pmid/37555134&rfr_iscdi=true