3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers
Hydrogels have the potential to play a crucial role in bioelectronics, as they share many properties with human tissues. However, to effectively bridge the gap between electronics and biological systems, hydrogels must possess multiple functionalities, including toughness, stretchability, self-heali...
Gespeichert in:
Veröffentlicht in: | International journal of bioprinting 2023-01, Vol.9 (5), p.765-765 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 765 |
---|---|
container_issue | 5 |
container_start_page | 765 |
container_title | International journal of bioprinting |
container_volume | 9 |
creator | Kim, Soo A Lee, Yeontaek Park, Kijun Park, Jae An, Soohwan Oh, Jinseok Kang, Minkyong Lee, Yurim Jo, Yejin Cho, Seung-Woo Seo, Jungmok |
description | Hydrogels have the potential to play a crucial role in bioelectronics, as they share many properties with human tissues. However, to effectively bridge the gap between electronics and biological systems, hydrogels must possess multiple functionalities, including toughness, stretchability, self-healing ability, three-dimensional (3D) printability, and electrical conductivity. Fabricating such tough and self-healing materials has been reported, but it still remains a challenge to fulfill all of those features, and in particular, 3D printing of hydrogel is in the early stage of the research. In this paper, we present a 3D printable, tough, and self-healing multi-functional hydrogel in one platform made from a blend of poly(vinyl alcohol) (PVA), tannic acid (TA), and poly(acrylic acid) (PAA) hydrogel ink (PVA/TA/PAA hydrogel ink). Based on a reversible hydrogen-bond (H-bond)-based double network, the developed 3D printable hydrogel ink showed excellent printability via shear-thinning behavior, allowing high printing resolution (~100 μm) and successful fabrication of 3D-printed structure by layer-by-layer printing. Moreover, the PVA/TA/PAA hydrogel ink exhibited high toughness (tensile loading of up to ~45.6 kPa), stretchability (elongation of approximately 650%), tissue-like Young's modulus (~15 kPa), and self-healing ability within 5 min. Furthermore, carbon nanotube (CNT) fillers were successfully added to enhance the electrical conductivity of the hydrogel. We confirmed the practicality of the hydrogel inks for bioelectronics by demonstrating biocompatibility, tissue adhesiveness, and strain sensing ability through PVA/TA/PAA/CNT hydrogel ink. |
doi_str_mv | 10.18063/ijb.765 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10406165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848230642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-f5c856d765c6733e1e40231ad526db54898e5ff409a6fe661ad23a996f300463</originalsourceid><addsrcrecordid>eNpdkV9rFTEQxYMottSCn0ACffFla_5v9kmkahUKfemLTyGbndzNJTepya7lfnvT9tqqTzPM_DhzhoPQW0rOqSaKfwjb8bxX8gU6ZoKJThPCXh76vmf8CJ3WuiVtqimhXL9GR7yXUhLNjtEP_hnflpCWkDY4e7wDN9sUnI1xj5e8bmZs04QrRN_NYOM9Nu-nkjcQK74Ly4ydLWNOONmUl3UE7EOMUOob9MrbWOH0UE_QzdcvNxffuqvry-8Xn646JwhdOi-dlmpq_p3qOQcKgjBO7SSZmkYp9KBBei_IYJUHpdqGcTsMynNChOIn6OOj7O067mBykJZio2k_7WzZm2yD-XeTwmw2-ZehRBBFlWwK7w8KJf9coS5mF6qDGG2CvFbDtNCMEyVYQ8_-Q7d5Lam91yg2UK170T8LupJrLeCf3FBiHiIzLTLTP9x-97f7J_BPQPw3faCRUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829188747</pqid></control><display><type>article</type><title>3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kim, Soo A ; Lee, Yeontaek ; Park, Kijun ; Park, Jae ; An, Soohwan ; Oh, Jinseok ; Kang, Minkyong ; Lee, Yurim ; Jo, Yejin ; Cho, Seung-Woo ; Seo, Jungmok</creator><creatorcontrib>Kim, Soo A ; Lee, Yeontaek ; Park, Kijun ; Park, Jae ; An, Soohwan ; Oh, Jinseok ; Kang, Minkyong ; Lee, Yurim ; Jo, Yejin ; Cho, Seung-Woo ; Seo, Jungmok</creatorcontrib><description>Hydrogels have the potential to play a crucial role in bioelectronics, as they share many properties with human tissues. However, to effectively bridge the gap between electronics and biological systems, hydrogels must possess multiple functionalities, including toughness, stretchability, self-healing ability, three-dimensional (3D) printability, and electrical conductivity. Fabricating such tough and self-healing materials has been reported, but it still remains a challenge to fulfill all of those features, and in particular, 3D printing of hydrogel is in the early stage of the research. In this paper, we present a 3D printable, tough, and self-healing multi-functional hydrogel in one platform made from a blend of poly(vinyl alcohol) (PVA), tannic acid (TA), and poly(acrylic acid) (PAA) hydrogel ink (PVA/TA/PAA hydrogel ink). Based on a reversible hydrogen-bond (H-bond)-based double network, the developed 3D printable hydrogel ink showed excellent printability via shear-thinning behavior, allowing high printing resolution (~100 μm) and successful fabrication of 3D-printed structure by layer-by-layer printing. Moreover, the PVA/TA/PAA hydrogel ink exhibited high toughness (tensile loading of up to ~45.6 kPa), stretchability (elongation of approximately 650%), tissue-like Young's modulus (~15 kPa), and self-healing ability within 5 min. Furthermore, carbon nanotube (CNT) fillers were successfully added to enhance the electrical conductivity of the hydrogel. We confirmed the practicality of the hydrogel inks for bioelectronics by demonstrating biocompatibility, tissue adhesiveness, and strain sensing ability through PVA/TA/PAA/CNT hydrogel ink.</description><identifier>ISSN: 2424-7723</identifier><identifier>EISSN: 2424-8002</identifier><identifier>DOI: 10.18063/ijb.765</identifier><identifier>PMID: 37555082</identifier><language>eng</language><publisher>Singapore: AccScience Publishing</publisher><subject>3-D printers ; Acrylic acid ; Biocompatibility ; Carbon ; Carbon nanotubes ; Electrical conductivity ; Electrical resistivity ; Elongation ; Fillers ; Human tissues ; Hydrogels ; Hydrogen bonds ; Inks ; Mechanical properties ; Modulus of elasticity ; Polyacrylic acid ; Polyvinyl alcohol ; Printing ; Self healing materials ; Shear thinning (liquids) ; Stretchability ; System effectiveness ; Tannic acid ; Three dimensional printing ; Toughness</subject><ispartof>International journal of bioprinting, 2023-01, Vol.9 (5), p.765-765</ispartof><rights>Copyright:© 2023, Kim SA, Lee Y, Park K, et al.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright:© 2023, Kim SA, Lee Y, Park K, 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-f5c856d765c6733e1e40231ad526db54898e5ff409a6fe661ad23a996f300463</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406165/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406165/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37555082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Soo A</creatorcontrib><creatorcontrib>Lee, Yeontaek</creatorcontrib><creatorcontrib>Park, Kijun</creatorcontrib><creatorcontrib>Park, Jae</creatorcontrib><creatorcontrib>An, Soohwan</creatorcontrib><creatorcontrib>Oh, Jinseok</creatorcontrib><creatorcontrib>Kang, Minkyong</creatorcontrib><creatorcontrib>Lee, Yurim</creatorcontrib><creatorcontrib>Jo, Yejin</creatorcontrib><creatorcontrib>Cho, Seung-Woo</creatorcontrib><creatorcontrib>Seo, Jungmok</creatorcontrib><title>3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers</title><title>International journal of bioprinting</title><addtitle>Int J Bioprint</addtitle><description>Hydrogels have the potential to play a crucial role in bioelectronics, as they share many properties with human tissues. However, to effectively bridge the gap between electronics and biological systems, hydrogels must possess multiple functionalities, including toughness, stretchability, self-healing ability, three-dimensional (3D) printability, and electrical conductivity. Fabricating such tough and self-healing materials has been reported, but it still remains a challenge to fulfill all of those features, and in particular, 3D printing of hydrogel is in the early stage of the research. In this paper, we present a 3D printable, tough, and self-healing multi-functional hydrogel in one platform made from a blend of poly(vinyl alcohol) (PVA), tannic acid (TA), and poly(acrylic acid) (PAA) hydrogel ink (PVA/TA/PAA hydrogel ink). Based on a reversible hydrogen-bond (H-bond)-based double network, the developed 3D printable hydrogel ink showed excellent printability via shear-thinning behavior, allowing high printing resolution (~100 μm) and successful fabrication of 3D-printed structure by layer-by-layer printing. Moreover, the PVA/TA/PAA hydrogel ink exhibited high toughness (tensile loading of up to ~45.6 kPa), stretchability (elongation of approximately 650%), tissue-like Young's modulus (~15 kPa), and self-healing ability within 5 min. Furthermore, carbon nanotube (CNT) fillers were successfully added to enhance the electrical conductivity of the hydrogel. We confirmed the practicality of the hydrogel inks for bioelectronics by demonstrating biocompatibility, tissue adhesiveness, and strain sensing ability through PVA/TA/PAA/CNT hydrogel ink.</description><subject>3-D printers</subject><subject>Acrylic acid</subject><subject>Biocompatibility</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Elongation</subject><subject>Fillers</subject><subject>Human tissues</subject><subject>Hydrogels</subject><subject>Hydrogen bonds</subject><subject>Inks</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Polyacrylic acid</subject><subject>Polyvinyl alcohol</subject><subject>Printing</subject><subject>Self healing materials</subject><subject>Shear thinning (liquids)</subject><subject>Stretchability</subject><subject>System effectiveness</subject><subject>Tannic acid</subject><subject>Three dimensional printing</subject><subject>Toughness</subject><issn>2424-7723</issn><issn>2424-8002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkV9rFTEQxYMottSCn0ACffFla_5v9kmkahUKfemLTyGbndzNJTepya7lfnvT9tqqTzPM_DhzhoPQW0rOqSaKfwjb8bxX8gU6ZoKJThPCXh76vmf8CJ3WuiVtqimhXL9GR7yXUhLNjtEP_hnflpCWkDY4e7wDN9sUnI1xj5e8bmZs04QrRN_NYOM9Nu-nkjcQK74Ly4ydLWNOONmUl3UE7EOMUOob9MrbWOH0UE_QzdcvNxffuqvry-8Xn646JwhdOi-dlmpq_p3qOQcKgjBO7SSZmkYp9KBBei_IYJUHpdqGcTsMynNChOIn6OOj7O067mBykJZio2k_7WzZm2yD-XeTwmw2-ZehRBBFlWwK7w8KJf9coS5mF6qDGG2CvFbDtNCMEyVYQ8_-Q7d5Lam91yg2UK170T8LupJrLeCf3FBiHiIzLTLTP9x-97f7J_BPQPw3faCRUA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kim, Soo A</creator><creator>Lee, Yeontaek</creator><creator>Park, Kijun</creator><creator>Park, Jae</creator><creator>An, Soohwan</creator><creator>Oh, Jinseok</creator><creator>Kang, Minkyong</creator><creator>Lee, Yurim</creator><creator>Jo, Yejin</creator><creator>Cho, Seung-Woo</creator><creator>Seo, Jungmok</creator><general>AccScience Publishing</general><general>Whioce Publishing Pte. Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230101</creationdate><title>3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers</title><author>Kim, Soo A ; Lee, Yeontaek ; Park, Kijun ; Park, Jae ; An, Soohwan ; Oh, Jinseok ; Kang, Minkyong ; Lee, Yurim ; Jo, Yejin ; Cho, Seung-Woo ; Seo, Jungmok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-f5c856d765c6733e1e40231ad526db54898e5ff409a6fe661ad23a996f300463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>Acrylic acid</topic><topic>Biocompatibility</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Elongation</topic><topic>Fillers</topic><topic>Human tissues</topic><topic>Hydrogels</topic><topic>Hydrogen bonds</topic><topic>Inks</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Polyacrylic acid</topic><topic>Polyvinyl alcohol</topic><topic>Printing</topic><topic>Self healing materials</topic><topic>Shear thinning (liquids)</topic><topic>Stretchability</topic><topic>System effectiveness</topic><topic>Tannic acid</topic><topic>Three dimensional printing</topic><topic>Toughness</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Soo A</creatorcontrib><creatorcontrib>Lee, Yeontaek</creatorcontrib><creatorcontrib>Park, Kijun</creatorcontrib><creatorcontrib>Park, Jae</creatorcontrib><creatorcontrib>An, Soohwan</creatorcontrib><creatorcontrib>Oh, Jinseok</creatorcontrib><creatorcontrib>Kang, Minkyong</creatorcontrib><creatorcontrib>Lee, Yurim</creatorcontrib><creatorcontrib>Jo, Yejin</creatorcontrib><creatorcontrib>Cho, Seung-Woo</creatorcontrib><creatorcontrib>Seo, Jungmok</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of bioprinting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Soo A</au><au>Lee, Yeontaek</au><au>Park, Kijun</au><au>Park, Jae</au><au>An, Soohwan</au><au>Oh, Jinseok</au><au>Kang, Minkyong</au><au>Lee, Yurim</au><au>Jo, Yejin</au><au>Cho, Seung-Woo</au><au>Seo, Jungmok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers</atitle><jtitle>International journal of bioprinting</jtitle><addtitle>Int J Bioprint</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>9</volume><issue>5</issue><spage>765</spage><epage>765</epage><pages>765-765</pages><issn>2424-7723</issn><eissn>2424-8002</eissn><abstract>Hydrogels have the potential to play a crucial role in bioelectronics, as they share many properties with human tissues. However, to effectively bridge the gap between electronics and biological systems, hydrogels must possess multiple functionalities, including toughness, stretchability, self-healing ability, three-dimensional (3D) printability, and electrical conductivity. Fabricating such tough and self-healing materials has been reported, but it still remains a challenge to fulfill all of those features, and in particular, 3D printing of hydrogel is in the early stage of the research. In this paper, we present a 3D printable, tough, and self-healing multi-functional hydrogel in one platform made from a blend of poly(vinyl alcohol) (PVA), tannic acid (TA), and poly(acrylic acid) (PAA) hydrogel ink (PVA/TA/PAA hydrogel ink). Based on a reversible hydrogen-bond (H-bond)-based double network, the developed 3D printable hydrogel ink showed excellent printability via shear-thinning behavior, allowing high printing resolution (~100 μm) and successful fabrication of 3D-printed structure by layer-by-layer printing. Moreover, the PVA/TA/PAA hydrogel ink exhibited high toughness (tensile loading of up to ~45.6 kPa), stretchability (elongation of approximately 650%), tissue-like Young's modulus (~15 kPa), and self-healing ability within 5 min. Furthermore, carbon nanotube (CNT) fillers were successfully added to enhance the electrical conductivity of the hydrogel. We confirmed the practicality of the hydrogel inks for bioelectronics by demonstrating biocompatibility, tissue adhesiveness, and strain sensing ability through PVA/TA/PAA/CNT hydrogel ink.</abstract><cop>Singapore</cop><pub>AccScience Publishing</pub><pmid>37555082</pmid><doi>10.18063/ijb.765</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2424-7723 |
ispartof | International journal of bioprinting, 2023-01, Vol.9 (5), p.765-765 |
issn | 2424-7723 2424-8002 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10406165 |
source | PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 3-D printers Acrylic acid Biocompatibility Carbon Carbon nanotubes Electrical conductivity Electrical resistivity Elongation Fillers Human tissues Hydrogels Hydrogen bonds Inks Mechanical properties Modulus of elasticity Polyacrylic acid Polyvinyl alcohol Printing Self healing materials Shear thinning (liquids) Stretchability System effectiveness Tannic acid Three dimensional printing Toughness |
title | 3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printing%20of%20mechanically%20tough%20and%20self-healing%20hydrogels%20with%20carbon%20nanotube%20fillers&rft.jtitle=International%20journal%20of%20bioprinting&rft.au=Kim,%20Soo%20A&rft.date=2023-01-01&rft.volume=9&rft.issue=5&rft.spage=765&rft.epage=765&rft.pages=765-765&rft.issn=2424-7723&rft.eissn=2424-8002&rft_id=info:doi/10.18063/ijb.765&rft_dat=%3Cproquest_pubme%3E2848230642%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829188747&rft_id=info:pmid/37555082&rfr_iscdi=true |