3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers

Hydrogels have the potential to play a crucial role in bioelectronics, as they share many properties with human tissues. However, to effectively bridge the gap between electronics and biological systems, hydrogels must possess multiple functionalities, including toughness, stretchability, self-heali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of bioprinting 2023-01, Vol.9 (5), p.765-765
Hauptverfasser: Kim, Soo A, Lee, Yeontaek, Park, Kijun, Park, Jae, An, Soohwan, Oh, Jinseok, Kang, Minkyong, Lee, Yurim, Jo, Yejin, Cho, Seung-Woo, Seo, Jungmok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 765
container_issue 5
container_start_page 765
container_title International journal of bioprinting
container_volume 9
creator Kim, Soo A
Lee, Yeontaek
Park, Kijun
Park, Jae
An, Soohwan
Oh, Jinseok
Kang, Minkyong
Lee, Yurim
Jo, Yejin
Cho, Seung-Woo
Seo, Jungmok
description Hydrogels have the potential to play a crucial role in bioelectronics, as they share many properties with human tissues. However, to effectively bridge the gap between electronics and biological systems, hydrogels must possess multiple functionalities, including toughness, stretchability, self-healing ability, three-dimensional (3D) printability, and electrical conductivity. Fabricating such tough and self-healing materials has been reported, but it still remains a challenge to fulfill all of those features, and in particular, 3D printing of hydrogel is in the early stage of the research. In this paper, we present a 3D printable, tough, and self-healing multi-functional hydrogel in one platform made from a blend of poly(vinyl alcohol) (PVA), tannic acid (TA), and poly(acrylic acid) (PAA) hydrogel ink (PVA/TA/PAA hydrogel ink). Based on a reversible hydrogen-bond (H-bond)-based double network, the developed 3D printable hydrogel ink showed excellent printability via shear-thinning behavior, allowing high printing resolution (~100 μm) and successful fabrication of 3D-printed structure by layer-by-layer printing. Moreover, the PVA/TA/PAA hydrogel ink exhibited high toughness (tensile loading of up to ~45.6 kPa), stretchability (elongation of approximately 650%), tissue-like Young's modulus (~15 kPa), and self-healing ability within 5 min. Furthermore, carbon nanotube (CNT) fillers were successfully added to enhance the electrical conductivity of the hydrogel. We confirmed the practicality of the hydrogel inks for bioelectronics by demonstrating biocompatibility, tissue adhesiveness, and strain sensing ability through PVA/TA/PAA/CNT hydrogel ink.
doi_str_mv 10.18063/ijb.765
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10406165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848230642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-f5c856d765c6733e1e40231ad526db54898e5ff409a6fe661ad23a996f300463</originalsourceid><addsrcrecordid>eNpdkV9rFTEQxYMottSCn0ACffFla_5v9kmkahUKfemLTyGbndzNJTepya7lfnvT9tqqTzPM_DhzhoPQW0rOqSaKfwjb8bxX8gU6ZoKJThPCXh76vmf8CJ3WuiVtqimhXL9GR7yXUhLNjtEP_hnflpCWkDY4e7wDN9sUnI1xj5e8bmZs04QrRN_NYOM9Nu-nkjcQK74Ly4ydLWNOONmUl3UE7EOMUOob9MrbWOH0UE_QzdcvNxffuqvry-8Xn646JwhdOi-dlmpq_p3qOQcKgjBO7SSZmkYp9KBBei_IYJUHpdqGcTsMynNChOIn6OOj7O067mBykJZio2k_7WzZm2yD-XeTwmw2-ZehRBBFlWwK7w8KJf9coS5mF6qDGG2CvFbDtNCMEyVYQ8_-Q7d5Lam91yg2UK170T8LupJrLeCf3FBiHiIzLTLTP9x-97f7J_BPQPw3faCRUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829188747</pqid></control><display><type>article</type><title>3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kim, Soo A ; Lee, Yeontaek ; Park, Kijun ; Park, Jae ; An, Soohwan ; Oh, Jinseok ; Kang, Minkyong ; Lee, Yurim ; Jo, Yejin ; Cho, Seung-Woo ; Seo, Jungmok</creator><creatorcontrib>Kim, Soo A ; Lee, Yeontaek ; Park, Kijun ; Park, Jae ; An, Soohwan ; Oh, Jinseok ; Kang, Minkyong ; Lee, Yurim ; Jo, Yejin ; Cho, Seung-Woo ; Seo, Jungmok</creatorcontrib><description>Hydrogels have the potential to play a crucial role in bioelectronics, as they share many properties with human tissues. However, to effectively bridge the gap between electronics and biological systems, hydrogels must possess multiple functionalities, including toughness, stretchability, self-healing ability, three-dimensional (3D) printability, and electrical conductivity. Fabricating such tough and self-healing materials has been reported, but it still remains a challenge to fulfill all of those features, and in particular, 3D printing of hydrogel is in the early stage of the research. In this paper, we present a 3D printable, tough, and self-healing multi-functional hydrogel in one platform made from a blend of poly(vinyl alcohol) (PVA), tannic acid (TA), and poly(acrylic acid) (PAA) hydrogel ink (PVA/TA/PAA hydrogel ink). Based on a reversible hydrogen-bond (H-bond)-based double network, the developed 3D printable hydrogel ink showed excellent printability via shear-thinning behavior, allowing high printing resolution (~100 μm) and successful fabrication of 3D-printed structure by layer-by-layer printing. Moreover, the PVA/TA/PAA hydrogel ink exhibited high toughness (tensile loading of up to ~45.6 kPa), stretchability (elongation of approximately 650%), tissue-like Young's modulus (~15 kPa), and self-healing ability within 5 min. Furthermore, carbon nanotube (CNT) fillers were successfully added to enhance the electrical conductivity of the hydrogel. We confirmed the practicality of the hydrogel inks for bioelectronics by demonstrating biocompatibility, tissue adhesiveness, and strain sensing ability through PVA/TA/PAA/CNT hydrogel ink.</description><identifier>ISSN: 2424-7723</identifier><identifier>EISSN: 2424-8002</identifier><identifier>DOI: 10.18063/ijb.765</identifier><identifier>PMID: 37555082</identifier><language>eng</language><publisher>Singapore: AccScience Publishing</publisher><subject>3-D printers ; Acrylic acid ; Biocompatibility ; Carbon ; Carbon nanotubes ; Electrical conductivity ; Electrical resistivity ; Elongation ; Fillers ; Human tissues ; Hydrogels ; Hydrogen bonds ; Inks ; Mechanical properties ; Modulus of elasticity ; Polyacrylic acid ; Polyvinyl alcohol ; Printing ; Self healing materials ; Shear thinning (liquids) ; Stretchability ; System effectiveness ; Tannic acid ; Three dimensional printing ; Toughness</subject><ispartof>International journal of bioprinting, 2023-01, Vol.9 (5), p.765-765</ispartof><rights>Copyright:© 2023, Kim SA, Lee Y, Park K, et al.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright:© 2023, Kim SA, Lee Y, Park K, 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-f5c856d765c6733e1e40231ad526db54898e5ff409a6fe661ad23a996f300463</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406165/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406165/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37555082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Soo A</creatorcontrib><creatorcontrib>Lee, Yeontaek</creatorcontrib><creatorcontrib>Park, Kijun</creatorcontrib><creatorcontrib>Park, Jae</creatorcontrib><creatorcontrib>An, Soohwan</creatorcontrib><creatorcontrib>Oh, Jinseok</creatorcontrib><creatorcontrib>Kang, Minkyong</creatorcontrib><creatorcontrib>Lee, Yurim</creatorcontrib><creatorcontrib>Jo, Yejin</creatorcontrib><creatorcontrib>Cho, Seung-Woo</creatorcontrib><creatorcontrib>Seo, Jungmok</creatorcontrib><title>3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers</title><title>International journal of bioprinting</title><addtitle>Int J Bioprint</addtitle><description>Hydrogels have the potential to play a crucial role in bioelectronics, as they share many properties with human tissues. However, to effectively bridge the gap between electronics and biological systems, hydrogels must possess multiple functionalities, including toughness, stretchability, self-healing ability, three-dimensional (3D) printability, and electrical conductivity. Fabricating such tough and self-healing materials has been reported, but it still remains a challenge to fulfill all of those features, and in particular, 3D printing of hydrogel is in the early stage of the research. In this paper, we present a 3D printable, tough, and self-healing multi-functional hydrogel in one platform made from a blend of poly(vinyl alcohol) (PVA), tannic acid (TA), and poly(acrylic acid) (PAA) hydrogel ink (PVA/TA/PAA hydrogel ink). Based on a reversible hydrogen-bond (H-bond)-based double network, the developed 3D printable hydrogel ink showed excellent printability via shear-thinning behavior, allowing high printing resolution (~100 μm) and successful fabrication of 3D-printed structure by layer-by-layer printing. Moreover, the PVA/TA/PAA hydrogel ink exhibited high toughness (tensile loading of up to ~45.6 kPa), stretchability (elongation of approximately 650%), tissue-like Young's modulus (~15 kPa), and self-healing ability within 5 min. Furthermore, carbon nanotube (CNT) fillers were successfully added to enhance the electrical conductivity of the hydrogel. We confirmed the practicality of the hydrogel inks for bioelectronics by demonstrating biocompatibility, tissue adhesiveness, and strain sensing ability through PVA/TA/PAA/CNT hydrogel ink.</description><subject>3-D printers</subject><subject>Acrylic acid</subject><subject>Biocompatibility</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Elongation</subject><subject>Fillers</subject><subject>Human tissues</subject><subject>Hydrogels</subject><subject>Hydrogen bonds</subject><subject>Inks</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Polyacrylic acid</subject><subject>Polyvinyl alcohol</subject><subject>Printing</subject><subject>Self healing materials</subject><subject>Shear thinning (liquids)</subject><subject>Stretchability</subject><subject>System effectiveness</subject><subject>Tannic acid</subject><subject>Three dimensional printing</subject><subject>Toughness</subject><issn>2424-7723</issn><issn>2424-8002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkV9rFTEQxYMottSCn0ACffFla_5v9kmkahUKfemLTyGbndzNJTepya7lfnvT9tqqTzPM_DhzhoPQW0rOqSaKfwjb8bxX8gU6ZoKJThPCXh76vmf8CJ3WuiVtqimhXL9GR7yXUhLNjtEP_hnflpCWkDY4e7wDN9sUnI1xj5e8bmZs04QrRN_NYOM9Nu-nkjcQK74Ly4ydLWNOONmUl3UE7EOMUOob9MrbWOH0UE_QzdcvNxffuqvry-8Xn646JwhdOi-dlmpq_p3qOQcKgjBO7SSZmkYp9KBBei_IYJUHpdqGcTsMynNChOIn6OOj7O067mBykJZio2k_7WzZm2yD-XeTwmw2-ZehRBBFlWwK7w8KJf9coS5mF6qDGG2CvFbDtNCMEyVYQ8_-Q7d5Lam91yg2UK170T8LupJrLeCf3FBiHiIzLTLTP9x-97f7J_BPQPw3faCRUA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kim, Soo A</creator><creator>Lee, Yeontaek</creator><creator>Park, Kijun</creator><creator>Park, Jae</creator><creator>An, Soohwan</creator><creator>Oh, Jinseok</creator><creator>Kang, Minkyong</creator><creator>Lee, Yurim</creator><creator>Jo, Yejin</creator><creator>Cho, Seung-Woo</creator><creator>Seo, Jungmok</creator><general>AccScience Publishing</general><general>Whioce Publishing Pte. Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230101</creationdate><title>3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers</title><author>Kim, Soo A ; Lee, Yeontaek ; Park, Kijun ; Park, Jae ; An, Soohwan ; Oh, Jinseok ; Kang, Minkyong ; Lee, Yurim ; Jo, Yejin ; Cho, Seung-Woo ; Seo, Jungmok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-f5c856d765c6733e1e40231ad526db54898e5ff409a6fe661ad23a996f300463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>Acrylic acid</topic><topic>Biocompatibility</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Elongation</topic><topic>Fillers</topic><topic>Human tissues</topic><topic>Hydrogels</topic><topic>Hydrogen bonds</topic><topic>Inks</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Polyacrylic acid</topic><topic>Polyvinyl alcohol</topic><topic>Printing</topic><topic>Self healing materials</topic><topic>Shear thinning (liquids)</topic><topic>Stretchability</topic><topic>System effectiveness</topic><topic>Tannic acid</topic><topic>Three dimensional printing</topic><topic>Toughness</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Soo A</creatorcontrib><creatorcontrib>Lee, Yeontaek</creatorcontrib><creatorcontrib>Park, Kijun</creatorcontrib><creatorcontrib>Park, Jae</creatorcontrib><creatorcontrib>An, Soohwan</creatorcontrib><creatorcontrib>Oh, Jinseok</creatorcontrib><creatorcontrib>Kang, Minkyong</creatorcontrib><creatorcontrib>Lee, Yurim</creatorcontrib><creatorcontrib>Jo, Yejin</creatorcontrib><creatorcontrib>Cho, Seung-Woo</creatorcontrib><creatorcontrib>Seo, Jungmok</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of bioprinting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Soo A</au><au>Lee, Yeontaek</au><au>Park, Kijun</au><au>Park, Jae</au><au>An, Soohwan</au><au>Oh, Jinseok</au><au>Kang, Minkyong</au><au>Lee, Yurim</au><au>Jo, Yejin</au><au>Cho, Seung-Woo</au><au>Seo, Jungmok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers</atitle><jtitle>International journal of bioprinting</jtitle><addtitle>Int J Bioprint</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>9</volume><issue>5</issue><spage>765</spage><epage>765</epage><pages>765-765</pages><issn>2424-7723</issn><eissn>2424-8002</eissn><abstract>Hydrogels have the potential to play a crucial role in bioelectronics, as they share many properties with human tissues. However, to effectively bridge the gap between electronics and biological systems, hydrogels must possess multiple functionalities, including toughness, stretchability, self-healing ability, three-dimensional (3D) printability, and electrical conductivity. Fabricating such tough and self-healing materials has been reported, but it still remains a challenge to fulfill all of those features, and in particular, 3D printing of hydrogel is in the early stage of the research. In this paper, we present a 3D printable, tough, and self-healing multi-functional hydrogel in one platform made from a blend of poly(vinyl alcohol) (PVA), tannic acid (TA), and poly(acrylic acid) (PAA) hydrogel ink (PVA/TA/PAA hydrogel ink). Based on a reversible hydrogen-bond (H-bond)-based double network, the developed 3D printable hydrogel ink showed excellent printability via shear-thinning behavior, allowing high printing resolution (~100 μm) and successful fabrication of 3D-printed structure by layer-by-layer printing. Moreover, the PVA/TA/PAA hydrogel ink exhibited high toughness (tensile loading of up to ~45.6 kPa), stretchability (elongation of approximately 650%), tissue-like Young's modulus (~15 kPa), and self-healing ability within 5 min. Furthermore, carbon nanotube (CNT) fillers were successfully added to enhance the electrical conductivity of the hydrogel. We confirmed the practicality of the hydrogel inks for bioelectronics by demonstrating biocompatibility, tissue adhesiveness, and strain sensing ability through PVA/TA/PAA/CNT hydrogel ink.</abstract><cop>Singapore</cop><pub>AccScience Publishing</pub><pmid>37555082</pmid><doi>10.18063/ijb.765</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2424-7723
ispartof International journal of bioprinting, 2023-01, Vol.9 (5), p.765-765
issn 2424-7723
2424-8002
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10406165
source PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 3-D printers
Acrylic acid
Biocompatibility
Carbon
Carbon nanotubes
Electrical conductivity
Electrical resistivity
Elongation
Fillers
Human tissues
Hydrogels
Hydrogen bonds
Inks
Mechanical properties
Modulus of elasticity
Polyacrylic acid
Polyvinyl alcohol
Printing
Self healing materials
Shear thinning (liquids)
Stretchability
System effectiveness
Tannic acid
Three dimensional printing
Toughness
title 3D printing of mechanically tough and self-healing hydrogels with carbon nanotube fillers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printing%20of%20mechanically%20tough%20and%20self-healing%20hydrogels%20with%20carbon%20nanotube%20fillers&rft.jtitle=International%20journal%20of%20bioprinting&rft.au=Kim,%20Soo%20A&rft.date=2023-01-01&rft.volume=9&rft.issue=5&rft.spage=765&rft.epage=765&rft.pages=765-765&rft.issn=2424-7723&rft.eissn=2424-8002&rft_id=info:doi/10.18063/ijb.765&rft_dat=%3Cproquest_pubme%3E2848230642%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829188747&rft_id=info:pmid/37555082&rfr_iscdi=true