Texture‐based residual stress analysis of laser powder bed fused Inconel 718 parts
Although layer‐based additive manufacturing methods such as laser powder bed fusion (PBF‐LB) offer an immense geometrical freedom in design, they are typically subject to a build‐up of internal stress (i.e. thermal stress) during manufacturing. As a consequence, significant residual stress (RS) is r...
Gespeichert in:
Veröffentlicht in: | Journal of applied crystallography 2023-08, Vol.56 (4), p.1076-1090 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1090 |
---|---|
container_issue | 4 |
container_start_page | 1076 |
container_title | Journal of applied crystallography |
container_volume | 56 |
creator | Schröder, Jakob Evans, Alexander Luzin, Vladimir Abreu Faria, Guilherme Degener, Sebastian Polatidis, Efthymios Čapek, Jan Kromm, Arne Dovzhenko, Gleb Bruno, Giovanni |
description | Although layer‐based additive manufacturing methods such as laser powder bed fusion (PBF‐LB) offer an immense geometrical freedom in design, they are typically subject to a build‐up of internal stress (i.e. thermal stress) during manufacturing. As a consequence, significant residual stress (RS) is retained in the final part as a footprint of these internal stresses. Furthermore, localized melting and solidification inherently induce columnar‐type grain growth accompanied by crystallographic texture. Although diffraction‐based methods are commonly used to determine the RS distribution in PBF‐LB parts, such features pose metrological challenges in their application. In theory, preferred grain orientation invalidates the hypothesis of isotropic material behavior underlying the common methods to determine RS. In this work, more refined methods are employed to determine RS in PBF‐LB/M/IN718 prisms, based on crystallographic texture data. In fact, the employment of direction‐dependent elastic constants (i.e. stress factors) for the calculation of RS results in insignificant differences from conventional approaches based on the hypothesis of isotropic mechanical properties. It can be concluded that this result is directly linked to the fact that the {311} lattice planes typically used for RS analysis in nickel‐based alloys have high multiplicity and less strong texture intensities compared with other lattice planes. It is also found that the length of the laser scan vectors determines the surface RS distribution in prisms prior to their removal from the baseplate. On removal from the baseplate the surface RS considerably relaxes and/or redistributes; a combination of the geometry and the scanning strategy dictates the sub‐surface RS distribution.
In this article, a texture‐based characterization of surface, sub‐surface and bulk residual stress in laser powder bed fused Inconel 718 alloy is carried out. It is shown that, in the case of this nickel‐based superalloy, the texture affects the residual stress determination only when it has sufficient strength. |
doi_str_mv | 10.1107/S1600576723004855 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10405581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848230463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4782-c2bb991d34c4dc321bb5dc5ad47688adf564f6f9adfb59fec6c2653a8f49b03d3</originalsourceid><addsrcrecordid>eNqFkctOGzEUhi1EVS7tA7BBI7Fhk9b38awQiihQRaoEqcTO8hUGOeNgz0Cz4xF4Rp6kTpMiCovKi3N0_P2_7PMDsIfgF4Rg_fUScQhZzWtMIKSCsQ2wvRyNlrPNV_0W2Mn5FkJUUPwRbJGaMYYx2wbTqfvVD8k9Pz5plZ2tksutHVSocl_aXKlOhUVucxV9FQqRqnl8sKXoAvthKTnvTOxcqGokqrlKff4EPngVsvu8rrvg57eT6fhsNPlxej4-nowMrQUeGax10yBLqKHWEIy0ZtYwZWnNhVDWM049903pNGu8M9xgzogSnjYaEkt2wdHKdz7ombPGdX1SQc5TO1NpIaNq5b83XXsjr-O9RJBCxgQqDodrhxTvBpd7OWuzcSGozsUhSyyoKMulnBT04A16G4dUtvOH4qIpBxcKrSiTYs7J-ZfXICiXocl3oRXN_utvvCj-plSAZgU8tMEt_u8ov48v8NUVgxiT34Z8pBY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846898982</pqid></control><display><type>article</type><title>Texture‐based residual stress analysis of laser powder bed fused Inconel 718 parts</title><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Schröder, Jakob ; Evans, Alexander ; Luzin, Vladimir ; Abreu Faria, Guilherme ; Degener, Sebastian ; Polatidis, Efthymios ; Čapek, Jan ; Kromm, Arne ; Dovzhenko, Gleb ; Bruno, Giovanni</creator><creatorcontrib>Schröder, Jakob ; Evans, Alexander ; Luzin, Vladimir ; Abreu Faria, Guilherme ; Degener, Sebastian ; Polatidis, Efthymios ; Čapek, Jan ; Kromm, Arne ; Dovzhenko, Gleb ; Bruno, Giovanni</creatorcontrib><description>Although layer‐based additive manufacturing methods such as laser powder bed fusion (PBF‐LB) offer an immense geometrical freedom in design, they are typically subject to a build‐up of internal stress (i.e. thermal stress) during manufacturing. As a consequence, significant residual stress (RS) is retained in the final part as a footprint of these internal stresses. Furthermore, localized melting and solidification inherently induce columnar‐type grain growth accompanied by crystallographic texture. Although diffraction‐based methods are commonly used to determine the RS distribution in PBF‐LB parts, such features pose metrological challenges in their application. In theory, preferred grain orientation invalidates the hypothesis of isotropic material behavior underlying the common methods to determine RS. In this work, more refined methods are employed to determine RS in PBF‐LB/M/IN718 prisms, based on crystallographic texture data. In fact, the employment of direction‐dependent elastic constants (i.e. stress factors) for the calculation of RS results in insignificant differences from conventional approaches based on the hypothesis of isotropic mechanical properties. It can be concluded that this result is directly linked to the fact that the {311} lattice planes typically used for RS analysis in nickel‐based alloys have high multiplicity and less strong texture intensities compared with other lattice planes. It is also found that the length of the laser scan vectors determines the surface RS distribution in prisms prior to their removal from the baseplate. On removal from the baseplate the surface RS considerably relaxes and/or redistributes; a combination of the geometry and the scanning strategy dictates the sub‐surface RS distribution.
In this article, a texture‐based characterization of surface, sub‐surface and bulk residual stress in laser powder bed fused Inconel 718 alloy is carried out. It is shown that, in the case of this nickel‐based superalloy, the texture affects the residual stress determination only when it has sufficient strength.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576723004855</identifier><identifier>PMID: 37555225</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>additive manufacturing ; Crystallography ; Elastic properties ; electron backscattered diffraction ; Grain growth ; Grain orientation ; Hypotheses ; Isotropic material ; Lasers ; Manufacturing ; Mechanical properties ; Melting ; Nickel ; Nickel base alloys ; Powder beds ; principal stress ; Prisms ; Production methods ; Research Papers ; Residual stress ; Solidification ; Stress analysis ; Superalloys ; Texture ; Thermal stress</subject><ispartof>Journal of applied crystallography, 2023-08, Vol.56 (4), p.1076-1090</ispartof><rights>2023 Jakob Schröder et al. published by IUCr Journals.</rights><rights>Jakob Schröder et al. 2023.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Jakob Schröder et al. 2023 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4782-c2bb991d34c4dc321bb5dc5ad47688adf564f6f9adfb59fec6c2653a8f49b03d3</citedby><cites>FETCH-LOGICAL-c4782-c2bb991d34c4dc321bb5dc5ad47688adf564f6f9adfb59fec6c2653a8f49b03d3</cites><orcidid>0000-0001-9632-3960 ; 0000-0002-0365-8639 ; 0000-0003-2635-6921 ; 0000-0002-8377-9026 ; 0000-0003-0340-9656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600576723004855$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600576723004855$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37555225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schröder, Jakob</creatorcontrib><creatorcontrib>Evans, Alexander</creatorcontrib><creatorcontrib>Luzin, Vladimir</creatorcontrib><creatorcontrib>Abreu Faria, Guilherme</creatorcontrib><creatorcontrib>Degener, Sebastian</creatorcontrib><creatorcontrib>Polatidis, Efthymios</creatorcontrib><creatorcontrib>Čapek, Jan</creatorcontrib><creatorcontrib>Kromm, Arne</creatorcontrib><creatorcontrib>Dovzhenko, Gleb</creatorcontrib><creatorcontrib>Bruno, Giovanni</creatorcontrib><title>Texture‐based residual stress analysis of laser powder bed fused Inconel 718 parts</title><title>Journal of applied crystallography</title><addtitle>J Appl Crystallogr</addtitle><description>Although layer‐based additive manufacturing methods such as laser powder bed fusion (PBF‐LB) offer an immense geometrical freedom in design, they are typically subject to a build‐up of internal stress (i.e. thermal stress) during manufacturing. As a consequence, significant residual stress (RS) is retained in the final part as a footprint of these internal stresses. Furthermore, localized melting and solidification inherently induce columnar‐type grain growth accompanied by crystallographic texture. Although diffraction‐based methods are commonly used to determine the RS distribution in PBF‐LB parts, such features pose metrological challenges in their application. In theory, preferred grain orientation invalidates the hypothesis of isotropic material behavior underlying the common methods to determine RS. In this work, more refined methods are employed to determine RS in PBF‐LB/M/IN718 prisms, based on crystallographic texture data. In fact, the employment of direction‐dependent elastic constants (i.e. stress factors) for the calculation of RS results in insignificant differences from conventional approaches based on the hypothesis of isotropic mechanical properties. It can be concluded that this result is directly linked to the fact that the {311} lattice planes typically used for RS analysis in nickel‐based alloys have high multiplicity and less strong texture intensities compared with other lattice planes. It is also found that the length of the laser scan vectors determines the surface RS distribution in prisms prior to their removal from the baseplate. On removal from the baseplate the surface RS considerably relaxes and/or redistributes; a combination of the geometry and the scanning strategy dictates the sub‐surface RS distribution.
In this article, a texture‐based characterization of surface, sub‐surface and bulk residual stress in laser powder bed fused Inconel 718 alloy is carried out. It is shown that, in the case of this nickel‐based superalloy, the texture affects the residual stress determination only when it has sufficient strength.</description><subject>additive manufacturing</subject><subject>Crystallography</subject><subject>Elastic properties</subject><subject>electron backscattered diffraction</subject><subject>Grain growth</subject><subject>Grain orientation</subject><subject>Hypotheses</subject><subject>Isotropic material</subject><subject>Lasers</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Melting</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Powder beds</subject><subject>principal stress</subject><subject>Prisms</subject><subject>Production methods</subject><subject>Research Papers</subject><subject>Residual stress</subject><subject>Solidification</subject><subject>Stress analysis</subject><subject>Superalloys</subject><subject>Texture</subject><subject>Thermal stress</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkctOGzEUhi1EVS7tA7BBI7Fhk9b38awQiihQRaoEqcTO8hUGOeNgz0Cz4xF4Rp6kTpMiCovKi3N0_P2_7PMDsIfgF4Rg_fUScQhZzWtMIKSCsQ2wvRyNlrPNV_0W2Mn5FkJUUPwRbJGaMYYx2wbTqfvVD8k9Pz5plZ2tksutHVSocl_aXKlOhUVucxV9FQqRqnl8sKXoAvthKTnvTOxcqGokqrlKff4EPngVsvu8rrvg57eT6fhsNPlxej4-nowMrQUeGax10yBLqKHWEIy0ZtYwZWnNhVDWM049903pNGu8M9xgzogSnjYaEkt2wdHKdz7ombPGdX1SQc5TO1NpIaNq5b83XXsjr-O9RJBCxgQqDodrhxTvBpd7OWuzcSGozsUhSyyoKMulnBT04A16G4dUtvOH4qIpBxcKrSiTYs7J-ZfXICiXocl3oRXN_utvvCj-plSAZgU8tMEt_u8ov48v8NUVgxiT34Z8pBY</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Schröder, Jakob</creator><creator>Evans, Alexander</creator><creator>Luzin, Vladimir</creator><creator>Abreu Faria, Guilherme</creator><creator>Degener, Sebastian</creator><creator>Polatidis, Efthymios</creator><creator>Čapek, Jan</creator><creator>Kromm, Arne</creator><creator>Dovzhenko, Gleb</creator><creator>Bruno, Giovanni</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9632-3960</orcidid><orcidid>https://orcid.org/0000-0002-0365-8639</orcidid><orcidid>https://orcid.org/0000-0003-2635-6921</orcidid><orcidid>https://orcid.org/0000-0002-8377-9026</orcidid><orcidid>https://orcid.org/0000-0003-0340-9656</orcidid></search><sort><creationdate>202308</creationdate><title>Texture‐based residual stress analysis of laser powder bed fused Inconel 718 parts</title><author>Schröder, Jakob ; Evans, Alexander ; Luzin, Vladimir ; Abreu Faria, Guilherme ; Degener, Sebastian ; Polatidis, Efthymios ; Čapek, Jan ; Kromm, Arne ; Dovzhenko, Gleb ; Bruno, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4782-c2bb991d34c4dc321bb5dc5ad47688adf564f6f9adfb59fec6c2653a8f49b03d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>additive manufacturing</topic><topic>Crystallography</topic><topic>Elastic properties</topic><topic>electron backscattered diffraction</topic><topic>Grain growth</topic><topic>Grain orientation</topic><topic>Hypotheses</topic><topic>Isotropic material</topic><topic>Lasers</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Melting</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Powder beds</topic><topic>principal stress</topic><topic>Prisms</topic><topic>Production methods</topic><topic>Research Papers</topic><topic>Residual stress</topic><topic>Solidification</topic><topic>Stress analysis</topic><topic>Superalloys</topic><topic>Texture</topic><topic>Thermal stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schröder, Jakob</creatorcontrib><creatorcontrib>Evans, Alexander</creatorcontrib><creatorcontrib>Luzin, Vladimir</creatorcontrib><creatorcontrib>Abreu Faria, Guilherme</creatorcontrib><creatorcontrib>Degener, Sebastian</creatorcontrib><creatorcontrib>Polatidis, Efthymios</creatorcontrib><creatorcontrib>Čapek, Jan</creatorcontrib><creatorcontrib>Kromm, Arne</creatorcontrib><creatorcontrib>Dovzhenko, Gleb</creatorcontrib><creatorcontrib>Bruno, Giovanni</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schröder, Jakob</au><au>Evans, Alexander</au><au>Luzin, Vladimir</au><au>Abreu Faria, Guilherme</au><au>Degener, Sebastian</au><au>Polatidis, Efthymios</au><au>Čapek, Jan</au><au>Kromm, Arne</au><au>Dovzhenko, Gleb</au><au>Bruno, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Texture‐based residual stress analysis of laser powder bed fused Inconel 718 parts</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J Appl Crystallogr</addtitle><date>2023-08</date><risdate>2023</risdate><volume>56</volume><issue>4</issue><spage>1076</spage><epage>1090</epage><pages>1076-1090</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>Although layer‐based additive manufacturing methods such as laser powder bed fusion (PBF‐LB) offer an immense geometrical freedom in design, they are typically subject to a build‐up of internal stress (i.e. thermal stress) during manufacturing. As a consequence, significant residual stress (RS) is retained in the final part as a footprint of these internal stresses. Furthermore, localized melting and solidification inherently induce columnar‐type grain growth accompanied by crystallographic texture. Although diffraction‐based methods are commonly used to determine the RS distribution in PBF‐LB parts, such features pose metrological challenges in their application. In theory, preferred grain orientation invalidates the hypothesis of isotropic material behavior underlying the common methods to determine RS. In this work, more refined methods are employed to determine RS in PBF‐LB/M/IN718 prisms, based on crystallographic texture data. In fact, the employment of direction‐dependent elastic constants (i.e. stress factors) for the calculation of RS results in insignificant differences from conventional approaches based on the hypothesis of isotropic mechanical properties. It can be concluded that this result is directly linked to the fact that the {311} lattice planes typically used for RS analysis in nickel‐based alloys have high multiplicity and less strong texture intensities compared with other lattice planes. It is also found that the length of the laser scan vectors determines the surface RS distribution in prisms prior to their removal from the baseplate. On removal from the baseplate the surface RS considerably relaxes and/or redistributes; a combination of the geometry and the scanning strategy dictates the sub‐surface RS distribution.
In this article, a texture‐based characterization of surface, sub‐surface and bulk residual stress in laser powder bed fused Inconel 718 alloy is carried out. It is shown that, in the case of this nickel‐based superalloy, the texture affects the residual stress determination only when it has sufficient strength.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>37555225</pmid><doi>10.1107/S1600576723004855</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9632-3960</orcidid><orcidid>https://orcid.org/0000-0002-0365-8639</orcidid><orcidid>https://orcid.org/0000-0003-2635-6921</orcidid><orcidid>https://orcid.org/0000-0002-8377-9026</orcidid><orcidid>https://orcid.org/0000-0003-0340-9656</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1600-5767 |
ispartof | Journal of applied crystallography, 2023-08, Vol.56 (4), p.1076-1090 |
issn | 1600-5767 0021-8898 1600-5767 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10405581 |
source | Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | additive manufacturing Crystallography Elastic properties electron backscattered diffraction Grain growth Grain orientation Hypotheses Isotropic material Lasers Manufacturing Mechanical properties Melting Nickel Nickel base alloys Powder beds principal stress Prisms Production methods Research Papers Residual stress Solidification Stress analysis Superalloys Texture Thermal stress |
title | Texture‐based residual stress analysis of laser powder bed fused Inconel 718 parts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Texture%E2%80%90based%20residual%20stress%20analysis%20of%20laser%20powder%20bed%20fused%20Inconel%20718%20parts&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Schr%C3%B6der,%20Jakob&rft.date=2023-08&rft.volume=56&rft.issue=4&rft.spage=1076&rft.epage=1090&rft.pages=1076-1090&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576723004855&rft_dat=%3Cproquest_pubme%3E2848230463%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2846898982&rft_id=info:pmid/37555225&rfr_iscdi=true |