Exploitation of surrogate variables in random forests for unbiased analysis of mutual impact and importance of features

Abstract Motivation Random forest is a popular machine learning approach for the analysis of high-dimensional data because it is flexible and provides variable importance measures for the selection of relevant features. However, the complex relationships between the features are usually not consider...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2023-08, Vol.39 (8)
Hauptverfasser: Voges, Lucas F, Jarren, Lukas C, Seifert, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!